

# American Journal of Essential Oils and Natural Products

Available online at www.essencejournal.com



#### ISSN: 2321 9114 AJEONP 2014; 1 (4): 24-28 © 2014 AkiNik Publications Received 13-05-2014 Accepted: 30-05-2014

#### Tran D. Thang

Faculty of Chemistry, Vinh University, 182-Le Duan, Vinh City, Nghean Province, Vietnam Email: thangtd@vinhuni.edu.vn

#### Do N. Dai

Faculty of Agriculture, Forestry and Fishery Nghean Economics University, Vinh City Nghean Province, Vietnam Email: daidn23@gmail.com

#### Bui V. Thanh

Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam

#### Dung, D. M.

Faculty of Chemistry, Vinh University, 182-Le Duan, Vinh City, NgheAn Province, Vietnam

#### Isiaka A. Ogunwande

Natural Product Research Unit, Department of Chemistry, Faculty of Science, Lagos State University, PMB 0001, Lasu Post Office, Ojo, Lagos, Nigeria Email: isiaka.ogunwande@lasu.edu.ng

Correspondence:

Tran D. Thang Faculty of Chemistry, Vinh University, 182-Le Duan, Vinh City, Nghean Province, Vietnam Email: thangtd@vinhuni.edu.vn

## Study on the Chemical Constituents of Essential Oils of Two Annonaceae Plants from Vietnam: *Miliusa sinensis* and *Artabotrys taynguyenensis*

### Tran D. Thang, Do N. Dai, Bui V. Thanh, Dung, D. M., Isiaka A. Ogunwande

#### ABSTRACT

The compositions of essential oils obtained by hydrodistillation of two Annonaceae plants from Vietnam were reported. The essential oils were analysed for their constituents by means of gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry techniques (GC-MS). The principal components of the leaf of *Miliusa sinensis* Fin. & Gagnep were  $\beta$ -caryophyllene (19.5%),  $\delta$ -selinene (10.3%), caryophyllene oxide (10.1%)  $\alpha$ -humulene (7.9%) and  $\beta$ -elemene (7.1%). The major compounds identified in the leaf oil of *Artabotrys taynguyenensis* Ban were valencene (40.1%) along with  $\delta$ -selinene (8.8%),  $\alpha$ -pinene (6.7%),  $\alpha$ -muurolene (5.1%) and  $\alpha$ -panasinsene (5.1%). However, bicycloelemene (25.1%), bicyclogermacrene (23.7%) and spathulenol (12.8%) were the principal compounds in the stem oil. This is the first report on the volatile constituents of these plant samples.

Keywords: *Miliusa sinensis, Artabotrys taynguyenensis,* essential oil composition, monoterpenes, sesquiterpenes

#### 1. Introduction

In the present paper, the chemical constituents identified in two newly studied plant species were being reported. *Miliusa sinensis* Finet et Gagnep., is a tree that grows up to 6 m tall. Most parts are pubescent and densely when young. The leaf blades are elliptic while the inflorescences are axillaries. The inner petals are purplish red and ovate while the stamens are also apically connected. The flower usually one is pubescent. The seed are 1 or 2 per monocarp. Flowering takes place between April and September while fruiting occurs from July to December <sup>[1]</sup>. Phytochemical analyses revealed the isolation and characterisation of cytotoxic 4',6'-dihydroxy-2',3',4-trimethoxydihydrochalcone along with pashanone, dihydropashanone, pinostrobin, 5-hydroxy-7, 4'-dimethoxy flavanone, 5-hydroxy-6, 7-dimethoxy flavanone, 5-hydroxy-7,8-dimethoxyflavanone,3,5-dihydroxy-7,3',4'trimethoxyflavone, liriodenine, 3,5-dihydroxy-7,3',4'trimethoxyflavone and 24-methylencycloartane-3 $\beta$ ,21-diol <sup>[2, 3]</sup>, cytotoxic miliusanes <sup>[4]</sup>, stigmasterol and  $\beta$ -sitosterol glucoside <sup>[2]</sup>.

*Artabotrys taynguyenensis* Ban is a species of flowering plants. The leaves form alternately. The single flower is hermaphroditic. Flowering occurs between January and May while the fruiting period takes between April and August. This aromatic plant is used for flavouring and in the treatment of fever and inflammation<sup>[11]</sup>.

Till now, there is no record of the chemical composition and biological activities of the essential oils of these plants in the literature. This prompted our interest in the research into their essential oil contents as part of our continued study on the chemical constituents of poorly studied species of Vietnamese plants <sup>[5, 6]</sup>.

## 2. Materials and methods

#### 2.1 Plants collection

Leaves of *M. sinensis* were harvested from Pù Huống Natural Reserve, NghệAn Province, Vietnam, in May 2013 respectively. Leaves and stem barks of *A. taynguyenensis* were collected from Lâm Đồng Province, Vietnam, in September 2013. Voucher specimens DND 283 and BVT 131 respectively were deposited at the Botany Museum, Vinh University, Vietnam. Plant samples were air-dried prior to extraction

## 2.2 Extraction of essential oils

0.5 Kg of each plant sample was shredded and the oil was obtained by hydrodistillation for 4 h at normal pressure, according to the Vietnamese Pharmacopoeia <sup>[7]</sup>. The yield content of the essential oils were 0.25% (v/w; *M. sinensis*, light yellow) and 0.21% (v/w; *A. taynguyenensis* for both the leaf and stem, light yellow and colourless respectively) calculated on a dry weight basis.

## 2.3 Analysis of the oils

Gas chromatography (GC) analysis was performed on an Agilent Technologies HP 6890 Plus Gas chromatograph equipped with a FID and fitted with HP-5MS column (30 m x 0.25 mm, film thickness 0.25  $\mu$ m, Agilent Technology, Berkshire, United Kingdom). The analytical conditions were: carrier gas H<sub>2</sub> (1 mL/min), injector temperature (PTV, programmed temperature vaporisation) 250 °C, detector temperature 260 °C, column temperature programmed from 40 °C (2 min hold) to 220 °C (10 min hold) at 4 °C/min. Samples were injected by splitting and the split ratio was 10:1. The volume injected was 1.0  $\mu$ L. Inlet pressure was 6.1 kPa.

An Agilent Technologies HP 6890N Plus Chromatograph fitted with a fused silica capillary HP-5 MS column (30 m x 0.25 mm, film thickness 0.25  $\mu$ m) and interfaced with a mass spectrometer HP 5973 MSD was used for the GC/MS analysis, under the same conditions as those used for GC analysis. The conditions were the same as described above with He (1 mL/min) as carrier gas. The MS conditions were as follows: ionization voltage 70 eV; emission current 40 mA; acquisitions scan mass range of 35-350 amu at a sampling rate of 1.0 scan/s.

## **2.4 Identification of the constituents**

The identification of constituents was performed on the basis of retention indices (RI) determined by co-injection with reference to a homologous series of *n*-alkanes, under identical experimental conditions. Further identification was performed by comparison of their mass spectra with those from NIST 08 Libraries (on ChemStation HP) and Wiley 9<sup>th</sup> Version and the home-made MS library built up from pure substances and components of known essential oils, as well as by comparison of their retention indices with literature values <sup>[8,9]</sup>.

## 3. Results & Discussion

Table 1 indicates the identities of forty-seven compounds identified in the oil of *M. sinensis*, accounting for 95.1% of the total oil content. They consist of 11 monoterpene hydrocarbons (5.2%), 3 oxygenated monoterpenes (0.2%), 18 sesquiterpene hydrocarbons (67.1%), 7 oxygenated sesquiterpenes (14.7%), 1 diterpene (0.3%), 2 fatty acids (0.5%) and 4 non-terpenes (6.8%). Sesquiterpenes were the most prominent class of compounds present in the oil. The

main constituents of the oil were  $\beta$ -caryophyllene (19.5%),  $\delta$ -selinene (10.3%) and caryophyllene oxide (10.1%). There were significant amounts of  $\alpha$ -humulene (7.9%),  $\beta$ -elemene (7.1%), aromadendrene (6.6%),  $\beta$ -selinene (6.2%) and germacrene D (5.8%).

The authors are aware of only two reports on the volatile oils of the genus Miliusa. In an investigation <sup>[10]</sup>, it was reported that *Miliusa traceyi* gave oil in which  $\alpha$ -pinene (18.7%),  $\beta$ pinene (18.6%) and  $\beta$ -caryophyllene (13.5%) were the major components. Miliusa horsfieldii comprised mainly of βcaryophyllene (20.2%) and caryophyllene oxide (12.5%), while  $\beta$ -caryophyllene (12.8%),  $\alpha$ -humulene (11.3%) and bicyclogermacrene (12.9%) were the principal components of Miliusa brahei. However, (Z)-citral (41.2%), βcarvophyllene (10.6%) and  $\alpha$ -humulene (6.2%) were the main constituents of *Miliusa baillonii* from Vietnam<sup>[11]</sup>. The high contents of  $\beta$ -caryophyllene and caryophyllene oxide make the composition of the oil similar to that of M. horsfieldii from Australia. It was noted that β-carvophyllene featured prominently in this oil of M. sinensis as well as other namely M. traceyi (13.5%), M. horsfieldii (20.2%), M. brahei (12.8%) and M. baillonii (10.6%) and may therefore be of chemotaxonomic interest.

Monoterpene hydrocarbons (2.6% and 20.2%), oxygenated monoterpenes (0.1% and 0.7%), sesquiterpene hydrocarbons (73.9% and 75.4%) and oxygenated sesquiterpenes (2.7% and 20.8%) were the classes of compound present in the oils of A. taynguyenensis (Table 1). The main constituents of the leaf oil were valencene (40.1%) along with  $\delta$ -selinene (8.8%),  $\alpha$ -pinene (6.7%),  $\alpha$ -muurolene (5.1%) and  $\alpha$ panasinsene (5.1%). Minor constituents include  $\beta$ -agarofuran (4.0%), α-humulene (3.3%), limonene (3.0%), δ-3-carene (2.4%),  $\alpha$ -copaene (2.4%) and  $\beta$ -caryophyllene (2.4%). However, bicycloelemene (25.1%), bicyclogermacrene (23.7%) and spathulenol (12.8%) were the principal compounds in the stem oil. Other notable constituents were  $\beta$ -carvophyllene (4.1%), isospathulenol (3.6%),  $\alpha$ -humulene (2.3%),  $\alpha$ -copaene (2.2%) and  $\alpha$ -calacorene (2.2%). The principal sesquiterpenes of the leaf oil were not identified in the stem bark and vice versa.

Literature information has shown that the main constituents of *Artabotrys pallens* from Vietnam <sup>[6]</sup> were  $\alpha$ -gurjunene (21.9%),  $\alpha$ -phellandrene (20.1%) and bicyclolemene (9.6%). *Artabotrys vinhensis* <sup>[12]</sup> had its main compounds as  $\alpha$ -pinene (16.7%), limonene (15.4%), germacrene D (14.4%) and benzyl benzoate (8.8%). The main constituents of *Artabotrys hexapetalus* <sup>[13]</sup> were caryophyllene oxide (31.5%) and  $\beta$ caryophyllene (114%). However, spathulenol (13.7%),  $\beta$ caryophyllene (6.6%),  $\gamma$ -elemene (6.3%) and  $\delta$ -cadinene (6.3%) were the principal components of *Artabotrys hongkongensis* <sup>[14]</sup>.

It could be seen that the compositional patterns of the oils of *A. taynguyenensis* were quite different from other species

previously reported from Vietnam. Although the identities of the major constituents were quite different, *A. pallens* and *A. vinhensis* were characterised by abundance of monoterpene and sesquiterpene hydrocarbons; *A. hexaplus, A. hongkongensis* and *A. taynguyenensis* (stem) also had large amounts of sesquiterpene (both hydrocarbons and oxygenated derivatives) while *A. taynguyenensis* (leaf) was rich in sesquiterpene hydrocarbons only.

| Compounds <sup>a</sup>              | RI <sup>b</sup> | RI <sup>c</sup> | Percentages |      |      |
|-------------------------------------|-----------------|-----------------|-------------|------|------|
|                                     |                 |                 | M.s         | A.tl | A.ts |
| Tricyclene                          | 926             | 926             | -           | -    | 0.1  |
| α-Pinene                            | 939             | 932             | 0.4         | 6.7  | 0.2  |
| Camphene                            | 953             | 946             | Tr          | 0.6  | 0.2  |
| Sabinene                            | 976             | 969             | 0.8         | -    | -    |
| β-Pinene                            | 980             | 974             | -           | 0.1  | -    |
| β-Myrcene                           | 990             | 988             | 0.2         | 1.9  | 0.1  |
| α-Phellandrene                      | 1006            | 1002            | 0.2         | 1.5  | 0.1  |
| δ-3-Carene                          | 1013            | 1008            | -           | 2.4  | 0.1  |
| a-Terpinene                         | 1016            | 1014            | 0.1         | 1.0  | -    |
| β-Phellandrene                      | 1028            | 1025            | 0.8         | -    | _    |
| Limonene                            | 1032            | 1024            | -           | 3.0  | 0.2  |
| $(Z)$ - $\beta$ -Ocimene            | 1043            | 1032            | 0.1         | 0.3  | 0.5  |
| ( <i>E</i> )-β-Ocimene              | 1052            | 1043            | 2.4         | 0.2  | 0.1  |
| γ-Terpinene                         | 1061            | 1054            | 0.1         | 0.5  | -    |
| α-Terpinolene                       | 1090            | 1086            | 0.1         | 1.4  | _    |
| Linalool                            | 1100            | 1095            | Tr          | 0.2  | 0.1  |
| cis-p-2-Menthen-1-ol                | 1100            | 1121            | -           | 0.1  | -    |
| <i>allo</i> -Ocimene                | 1121            | 1121            | -           | 0.2  | 0.9  |
| <i>cis</i> -3-Hexenyl isobutyrate   | 1120            | 1120            | 0.3         | -    | -    |
| Terpinen-4-ol                       | 1177            | 1176            | 0.1         | _    | _    |
| α-Terpineol                         | 1189            | 1186            | -           | 0.2  | _    |
| <i>p</i> -allyl Anisole (Estragole) | 1196            | 1196            | _           | 0.1  | _    |
| (Z)-3-Hexenyl-2-methylbutanoate     | 1231            | 1231            | 0.6         | -    | _    |
| Bornyl acetate                      | 1289            | 1287            | 0.1         | 0.1  | _    |
| Bicycloelemene                      | 1327            | 1338            | 0.8         | -    | 25.1 |
| α-Cubebene                          | 1351            | 1345            | 0.1         | -    | 0.1  |
| Cyclosativene                       | 1371            | 1369            | 0.1         | 0.1  | 0.1  |
| α-Ylangene                          | 1375            | 1373            | 0.3         | -    | -    |
| α-Copaene                           | 1377            | 1374            | -           | 2.4  | 2.2  |
| β-Elemene                           | 1391            | 1389            | 7.1         | 0.2  | 1.1  |
| Cyperene                            | 1399            | 1398            | -           | 0.1  | 0.2  |
| α-Cedrene                           | 1410            | 1412            | _           | 0.2  | -    |
| α-Gurjunene                         | 1412            | 1409            | 0.3         | -    | _    |
| β-Caryophyllene                     | 1419            | 1417            | 19.5        | 2.4  | 4.1  |
| β-Gurjunene                         | 1431            | 1431            | -           | 0.9  | 0.2  |
| trans-α-Bergamotene                 | 1435            | 1434            | -           | 0.2  | 0.2  |
| γ-Elemene                           | 1437            | 1434            | _           | -    | 1.7  |
| α-Guaiene                           | 1440            | 1439            | 0.5         | _    | -    |
| Aromadendrene                       | 1441            | 1439            | 6.6         | -    | 1.5  |
| α-Humulene                          | 1454            | 1452            | 7.9         | 3.3  | 2.3  |

| 0.4                                           | 1 4 7 4 | 1 4774 |      | 4.0   | 0.1   |
|-----------------------------------------------|---------|--------|------|-------|-------|
| β-Agarofuran                                  | 1474    | 1474   | -    | 4.0   | 0.1   |
| β-Chamigrene                                  | 1476    | 1476   | -    | 0.1   | -     |
| γ-Selinene                                    | 1484    | 1483   | -    | 1.4   | -     |
| Ledene                                        | 1485    | 1482   | -    | -     | 1.1   |
| Germacrene D                                  | 1485    | 1485   | 5.8  | -     | 1.7   |
| α-Amorphene                                   | 1485    | 1484   | 0.2  | 0.3   | 0.3   |
| δ-Selinene                                    | 1486    | 1485   | 10.3 | 8.8   | -     |
| β-Selinene                                    | 1489    | 1489   | 6.2  | 0.7   | -     |
| Valencene                                     | 1490    | 1490   | -    | 40.1  | -     |
| β-Guaiene                                     | 1491    | 1491   | 0.1  | -     | 0.3   |
| cis-Cadina-1,4-diene                          | 1496    | 1495   | -    | 0.2   | 0.9   |
| α-Muurolene                                   | 1500    | 1500   | -    | 5.1   | -     |
| Bicyclogermacrene                             | 1500    | 1500   | -    | -     | 23.7  |
| γ-Cadinene                                    | 1514    | 1513   | -    | -     | 1.5   |
| α-Panasinsene                                 | 1518    | 1518   | -    | 5.1   | -     |
| δ-Cadinene                                    | 1525    | 1522   | 0.8  | -     | 1.2   |
| α-Calacorene                                  | 1546    | 1544   | -    | 0.1   | 2.2   |
| Germacrene B                                  | 1510    | 1559   | -    | 0.5   | 1.8   |
| Cadala-1(10),3,8-triene                       | 1562    | 1562   | 0.3  | -     | -     |
| ( <i>E</i> )-Nerolidol                        | 1563    | 1561   | 0.3  | 0.1   | 0.6   |
| Spathulenol                                   | 1505    | 1501   | 2.4  | 0.1   | 12.8  |
| Caryophyllene oxide                           | 1583    | 1577   | 10.1 | 0.5   | -     |
| Viridiflorol                                  | 1583    | 1592   | 1.4  | -     | 1.1   |
|                                               | 1608    | 1607   |      |       | 0.6   |
| β-Oplopenone<br>5- <i>epi</i> -Neointermedeol | 1636    | 1637   | -    | - 0.9 |       |
| Isospathulenol                                | 1639    | 1637   | -    | 0.9   | - 3.6 |
| α-Cadinol                                     | 1653    | 1652   | -    | 1.2   | 1.2   |
|                                               |         |        | -    |       |       |
| α-Santalol                                    | 1671    | 1672   | -    | -     | 0.6   |
| Ledene oxide II                               | 1680    | 1682   | 0.2  | -     | -     |
| α-Bisabolol                                   | 1683    | 1685   | -    | -     | 0.3   |
| Mint sulphide                                 | 1741    | 1741   | 0.1  | -     | -     |
| α-Cyperone                                    | 1706    | 1746   | 0.2  | -     | -     |
| Benzyl benzoate                               | 1760    | 1759   | -    | 0.3   | 1.1   |
| 9,10-dehydro-Isolongifolene                   | 1798    | 1796   | 0.2  | -     | -     |
| 1,2-Benzenedicarboxylic acid                  | 1917    | 1917   | 4.0  | -     | -     |
| <i>n</i> -Hexadecanoic acid                   | 1982    | 1980   | 0.4  | -     | -     |
| Phytol                                        | 2125    | 1947   | 0.3  | -     | -     |
| Octadecanoic acid                             | 2188    | 2200   | 0.1  | -     | -     |
| (Z)-9-Octadecamide                            | 2398    | 2398   | 1.9  | -     | -     |
| TOTAL                                         |         |        | 95.1 | 99.3  | 98.5  |
| Monoterpene hydrocarbons                      |         |        | 5.2  | 20.2  | 2.6   |
| Oxygenated monoterpenes                       |         |        | 0.2  | 0.7   | 0.1   |
| Sesquiterpene hydrocarbons                    |         |        | 67.1 | 75.4  | 73.9  |
| Oxygenated sesquiterpenes                     |         |        | 14.7 | 2.7   | 20.8  |
| Diterpenes                                    |         |        | 0.3  | -     | -     |
| Fatty acids                                   |         |        | 0.5  | -     | -     |
| Non terpenes                                  |         |        | 6.8  | 0.3   | 1.1   |

## 4. Conclusions

For the first time, the compositions of the leaf essential oils

of the Vietnamese grown *M. sinensis* as well those of the leaf and stem of *A. taynguyenensis* were elucidated. Although,

ubiquitous terpenes were identified in all the samples, each species has its own compositional pattern different from other members of the genus. It is well known that variation exists between the chemical constituents in different plant parts. This and other factors such as the age of the plant, handling procedure, ecological and climatic conditions etc. may have been responsible for the observed differences in the chemical compounds identified in the species of each genus.

## 5. Acknowledgments

Authors are grateful to the Curators at The Botany Herbarium, Vinh University, Vietnam for the identification of the plant samples.

## 6. References

- Li B, Gilbert MG. Annonaceae. In: Flora of China 19, Wu Z, Raven PH, Hong D. (eds.) Science Press, Beijing & Missouri Botanical Garden Press, St Louis, 2011, 672-675, 708.
- 2 Thuy TTT, Anh NTH. Study on chemical and biological activities of *Miliusa sinensis* Finet et Gagnep., (Annonaceae). Journal of Science and Technology Vietnam 2010; 48(5):213-217.
- 3 Thuy TT, Quan TD, Anh NT, Van ST. A new hydrochalcone from *Miliusa sinensis*. Natural Product Research 2011; 25(24):1361-1365.
- 4 Zhang HJ, Ma C, Nguyen VH, Nguyen MC, Tan GT, Santarsiero BD. A class of cytotoxic agents from *Miliusa sinensis*. Journal of Medicinal Chemistry 2006; 49(2):693-708.
- 5 Dai DN, Thang TD, Thai TH, Thanh BV, Ogunwande IA. Composition of the wood oils of *Cupressaceae* from Vietnam. American Journal of Essential Oils and Natural Products 2013; 1(2):28-33.
- 6 Thang TD, Dai DN, Hoi TM, Ogunwande IA. Essential oils from five species of Annonaceae from Vietnam. Natural Product Communications 2013; 8(2):239-242.
- 7 Vietnamese Pharmacopoeia. Medical Publishing House, Hanoi, Vietnam, 1997, 1-134.
- 8 Adams RP. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectrometry. Ed 4, Allured Publishing, Carol Stream, IL, 2007.
- 9 Joulain D, Koenig WA. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. E.B. Verlag, Hamburg, Germany, 1998.
- 10 Brophy JJ, Goldsack RJ, Forster PI. The leaf oils of the Australian species of *Miliusa* (Annonaceae). Journal of Essential Oil Res 2004; 16(3):253-255.
- 11 Hoi TM, Dai DN, Thang TD, Dung NX. Chemical composition of the essential oil of *Miliusa baillonii*

Pierre (Annonaceae) from Vietnam. Journal of Biology Vietnam. 2011; 33(2): 60-63.

- 12 Dai DN, Thang TD, Hoi TM, Dung NX. Chemical constituents of essential oil from *Artabotrys vinhensis* from Vietnam. Journal of Science and Technology Vietnam 2010; 48(12):946-950.
- 13 Giang PM, Son PT, Koenig WA. Chemical composition of the flower essential oil of *Artabotry hexapetalus* (L. f.) Bhandare of Vietnam. Journal of Essential Oil Research. 2007; 19(6): 523-524.
- 14 Thang TD, Dai DN, Hoi TM, Ogunwande IA. Chemical compositions of leaf essential oils of some Annonaceae from Vietnam. Journal of Essential Oil Research 2013; 25(2):85-91.