

ISSN: 2321-9114 AJEONP 2023; 11(1): 24-26 © 2022 AkiNik Publications Received: 12-01-2023 Accepted: 17-02-2023

William N Setzer

Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA

American Journal of Essential Oils and Natural Products

Available online at www.essencejournal.com

Dimerization of myrcene to form the camphorenes: A density functional theory investigation

William N Setzer

Abstract

Dimers of myrcene, *p*-camphorene and *m*-camphorene, are sometimes detected as minor components in essential oils of members of the Burseraceae and other myrcene-rich essential oils. The compounds likely arise from Diels-Alder dimerization of myrcene. In order to provide some insight into the dimerization of myrcene to form camphorenes, a computational investigation using density functional theory (DFT) was carried out at the B3LYP/6-31G* level of theory. The transition-state energy for the formation of *m*-camphorene is lower than the transition-state energy of *m*-camphorene.

Keywords: Diels-Alder, [4+2] cyclization, DFT, B3LYP

1. Introduction

We have observed the occurrence of myrcene dimers, *m*-camphorene and *p*-camphorene (Fig 1), in the essential oils of *Boswellia carteri* (unpublished results from our laboratories). Simla Basar had isolated and characterized both *m*-camphorene and *p*-camphorene from *Boswellia serrata*^[1]. Both *m*-camphorene and *p*-camphorene have been detected in *Humulus lupulus* (hops) essential oil ^[2], "breu branco" (white pitch oleoresin, probably from *Protium* spp. ^[3]) ^[4], and *Cannabis sativa* (hemp) essential oil ^[5]. *P*-Camphorene has also been reported in the oleogum resin of *Commiphora mukul* ^[6] and *Commiphora wightii* ^[7].

Basar found *m*-camphorene to be in higher concentration than *p*-camphorene (62:38 ratio) in *B. serrata* ^[1]. The Carmagnola variety of hemp essential oil, on the other hand, showed *p*-camphorene to be predominant over *m*-camphorene (ratio of 67% *p*-camphorene, 33% *m*-camphorene) ^[5]. Our own investigation of *B. carteri* resin essential oils revealed *m*-camphorene (52-73%) to dominate over *p*-camphorene (27-48%) (Unpublished results from our laboratories).

Fig 1: Camphorenes from Diels-Alder dimerization of myrcene

Thermal Diels-Alder dimerization of myrcene led to four products, *m*-camphorene and *p*-camphorene, as well as two minor compounds, *m*, *m*-camphorene and *p*, *p*-camphorene (Figure 1)^[8,9].

Corresponding Author: William N Setzer Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA The distribution of the camphorenes (*p*-camphorene, *m*-camphorene, *p*, *p*-camphorene, and *m*, *m*-camphorene was approximately 43:28:18:11 ^[8] and 32:44:11:13 ^[9]. Photosensitized dimerization of myrcene led to at least seven dimeric products, including camphorenes ([4+2] dimeric products) as well as [2+2] cycloaddition dimers and possibly [4+4] dimers ^[10]. Unfortunately, the dimerization products were not fully characterized. In order to provide some insight into the energetics of the Diels-Alder dimerization of myrcene, the reactions have been modeled using density functional theory (DFT) at the B3LYP/6-31G* level of theory.

2. Computational Methods

All calculations were carried out using Spartan '18 for Windows^[11]. Initial conformational analyses were carried out on myrcene and each dimeric product using a Monte-Carlo molecular mechanics conformational search using the MMFF force field ^[12]. For each compound, all conformations from the MMFF conformational analysis were then modeled using density functional theory with the B3LYP functional ^[13, 14] and the 6-31G* basis set ^[15]. The lowest-energy conformations for each compound were then used in the analysis. All calculations were carried out in the gas phase.

3. Results and Discussion

The energetics of the Diels-Alder dimerization of myrcene are summarized in Table 1. The Diels-Alder dimerization of myrcene is an exothermic process. Both the *p*-camphorene and *m*-camphorene are lower in energy than the *p*,*p*-camphorene or the *m*, *m*-camphorene, and *p*-camphorene is slightly lower in energy than the *m*-camphorene. These energies would suggest that at equilibrium the distribution of isomers should be 55.9% *p*-camphorene, 44.0% *m*-camphorene, 0.1% *p*, *p*-camphorene, and 0.0% *m*,*m*-camphorene (Fig 2).

 Table 1: Density functional theory (DFT) energies (B3LYP/6-31G*, kcal/mol) for the dimerization of myrcene.

Dimer	ΔEts	ΔEdimer
<i>p</i> -Camphorene	25.7	-35.2
<i>m</i> -Camphorene	24.6	-35.0
p, p-Camphorene	26.0	-31.4
m, m-Camphorene	26.6	-31.0

 ΔE_{ts} = Energy of the Diels-Alder transition states compared to the starting compounds. ΔE_{dimer} = Energy of the dimeric products compared to the starting compounds.

Fig 2: Reaction profile for the Diels-Alder dimerization of myrcene to form p-camphorene

The lowest-energy transition structure observed was for the production of *m*-camphorene (24.6 kcal/mol), followed by *p*camphorene (25.7 kcal/mol), p, p-camphorene (26.0 kcal/mol) and *m*, *m*-camphorene (26.6 kcal/mol). Thus, the calculated energy barriers are consistent with preferential formation of *m*-camphorene (79.3%), *p*-camphorene (11.5%), *p*, *p*-camphorene (6.8%), and *m*,*m*-camphorene (2.4%). The transition-state energy differences are roughly consistent with the product distributions from the Diels-Alder dimerization of myrcene reported by Staples and co-workers [9] with mcamphorene (44%), p-camphorene (32%), m,m-camphorene (13%) and p,p-camphorene (11%). It is not clear why the product distribution of Diels-Alder dimers reported by Eisfelder and Weyerstahl^[8] are different, but the reactions were carried out under different conditions (225 °C for 3.5 h in the case of Eisfelder and Weyerstahl and 200 °C for 15 h in the presence of a free-radical scavenger in the case of Staples et al.). Interestingly, m-camphorene was the major camphorene observed in the essential oils of Boswellia serrata^[1] and Boswellia carteri (unpublished results from our laboratories).

It is not clear exactly how the camphorenes are formed in the plant resins of *Boswellia* species. The dimerization of myrcene may be thermal and/or photochemical under the sunny and hot conditions of their environments. *Boswellia serrata* is native to India while *B. carteri* is found in the horn of Africa ^[16]. The presence of camphorenes does not rule out enzyme-mediated formation, however.

4. Conclusions

Density functional theory (DFT) calculations on the thermal Diels-Alder dimerization of myrcene predict the preferred formation of *m*-camphorene over *p*-camphorene under kinetic-control conditions; *m*-camphorene has a lower transition-state energy. On the other hand, under equilibrium-controlled conditions, the *p*-camphorene product is lower in energy and should be the preferred product.

5. Acknowledgments

This work was carried out as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

6. References

- 1. Basar S. Phytochemical Investigations on *Boswellia* Species. Doctoral Dissertation, Universität Hamburg; c2005.
- Lammens H, Verzele M. The aroma of hops III. The occurrence of diterpenes in hop oil. Bull des Soc Chim Belges. 1968;77(9-10):497-503.
- Da Silva ER, de Oliveira DR, Melo M de FF, Bizzo HR, Leitão SG. Report on the Malungo expedition to the Erepecuru river, Oriximiná, Brazil. Part I: Is there a difference between black and white breu? Rev Bras Farmacogn. 2016;26:647-656.
- Da Cruz Albino R, Braz MM, Bizzo HR, Santana da Silva RV, Leitão SG, Ribeiro de Oliveira D. Amazonian medicinal smokes: Chemical analysis of Burseraceae pitch (breu) oleoresin smokes and insights into their use on headache. J Ethnopharmacol. 2021;276:114165. doi:10.1016/j.jep.2021.114165
- Pieracci Y, Ascrizzi R, Terreni V, *et al.* Essential oil of *Cannabis sativa* L: Comparison of yield and chemical composition of 11 hemp genotypes. Molecules. 2021;26(13):4080. doi:10.3390/molecules26134080
- Rücker G. Über monocyclische Diterpene aus dem indischen Guggul-Harz (*Commiphora mukul*). Arch Pharm (Weinheim). 1972;1972(7):486-493.
- Sarup P, Bala S, Kamboj S. Pharmacology and phytochemistry of oleo-gum resin of *Commiphora wightii* (Guggulu). *Scientifica (Cairo)*. 2015;2015:ID 138039. doi:10.1155/2015/138039
- Eisfelder W, Weyerstahl P. Diels-Alder Reaktion von Myrcen mit Isopren. Justus Liebigs Ann Chem. 1977;1977(6):988-998.
- Staples O, Leal JH, Cherry PA, McEnally CS, Pfefferle LD, Semelsberger TA, *et al.* Camphorane as a renewable diesel blendstock produced by cyclodimerization of myrcene. Energy and Fuels. 2019;33(10):9956-9964. doi:10.1021/acs.energyfuels.9b02557
- 10. Cid Gomes L, Rana A, Berglund M, Wiklund P, Ottosson H. Light-driven (cross-)dimerization of terpenes as a route to renewable C_{15} - C_{30} crudes for fuel and lubricant oil applications. Sustain Energy Fuels. 2023;7(3):868-882. doi:10.1039/d2se01370c
- 11. Spartan '18. Wavefunction Inc., Irvine, California, USA, 2019.
- Halgren TA. Merck Molecular Force Field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem. 1996;17:490-519.
- Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 2008;98(7):5648-5652.
- 14. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785-789.
- 15. Hehre WJ. A Guide to Molecular Mechanics and Quantum Chemical Calculations. Wavefunction Inc., Irvine, California, USA; c2003.
- 16. DeCarlo A, Dosoky NS, Satyal P, Sorensen A, Setzer WN. The essential oils of the Burseraceae. In: Malik S, ed. Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production. Springer Nature, Cham, Switzerland; c2019, Chapter 4.