

ISSN: 2321-9114 AJEONP 2023; 11(1): 06-11 © 2023 AkiNik Publications Received: 15-11-2022 Accepted: 28-12-2022

Kathy Swor 1432 W. Heartland Dr., Kuna, Idaho 83634, USA

Ambika Poudel Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, Utah 84043, USA

Prabodh Satyal Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, Utah 84043, USA

William N Setzer

 Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, Utah 84043, USA
 Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA

Corresponding Author: William N Setzer (1) Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, Utah 84043, USA (2) Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA

American Journal of Essential Oils and Natural Products

Available online at www.essencejournal.com

Composition of volatiles from *Sarcobatus vermiculatus* growing in southwestern Idaho

Kathy Swor, Ambika Poudel, Prabodh Satyal and William N Setzer

Abstract

Sarcobatus vermiculatus is a succulent halophyte commonly found in the Great Basin deserts. The phytochemistry of this plant has not been thoroughly investigated, so the purpose of this work was to examine the volatiles produced by *S. vermiculatus*. The essential oils were obtained in paltry yields (0.012-0.027%) by hydrodistillation. Gas chromatographic analysis revealed the essential oils to be mainly composed of heptacosane (13.7-24.3%), 4-vinylguaiacol (11.6-13.7%), pentacosane (7.6-9.1%), tricosane (4.7-6.9%), and palmitic acid (3.9-5.3%). Terpenoids were relatively low in concentration (12.2-21.0%). Because of the low yields, *S. vermiculatus* cannot be considered a viable source of essential oil.

Keywords Greasewood, essential oil, gas chromatography, chiral, enantiomers

1. Introduction

Sarcobatus vermiculatus (Hook.) Torr. (Greasewood), Sarcobataceae, is a deciduous shrub, 1-2 m in height, with green succulent leaves (1.5-4 cm long) (Figure 1)^[1]. The genus Sarcobatus is endemic to western North America, where it is largely found in the Great Basin and southwestern desert regions. Sarcobatus vermiculatus ranges from Alberta and Saskatchewan, Canada, south to northern Arizona and New Mexico, and from eastern Washington, Oregon, and California, east to the Dakotas, Nebraska, Kansas, and Texas (Figure 2)^[2]. It is a common plant in alkaline habitats of the Great Basin. Sarcobatus was formerly placed in the Chenopodiaceae, but has been segregated into its own family, the Sarcobataceae, within the order Caryophyllales^[3].

Fig 1: Sarcobatus vermiculatus from southwestern Idaho. Photograph by K. Swor

Fig 2: Range of Sarcobatus vermiculatus (greasewood). Adapted from Branson et al. [2].

Very little phytochemical work has been done on *S. vermiculatus*. Weber and co-workers analyzed the fatty acids in the seed oil of *S. vermiculatus* ^[4]. The seed oil was composed of 78.86% unsaturated fatty acids and 21.14% saturated, with linoleic acid (96.16%) dominating the unsaturated fraction, and palmitic acid (64.3%), myristic acid (13.15%), and stearic acid (5.82%) as major saturated fatty acids. As far as we are aware, there have been no investigations of the volatile phytochemicals of this plant. As part of our continuing exploration of the essential oils of Great Basin plants, this work presents the essential oil composition of *S. vermiculatus* growing in southwestern Idaho.

2. Materials and Methods

2.1 Plant Material

The aerial parts of three individual plants were collected on 28 June 2022 from Swan Falls, Snake River, Idaho. The plant was identified in the field by K. Swor, and verified by W.N. Setzer by comparison with samples from the New York Botanical Garden virtual herbarium (https://sweetgum.nybg.org/science/vh/specimen-

list/?SummaryData=Sarcobatus%20vermiculatus, accessed on 29 June 2022). A voucher specimen (WNS-Sv-5662) has been deposited in the University of Alabama in Huntsville herbarium. The fresh aerial parts were stored at -20 °C until distilled. The aerial parts of each plant sample were hydrodistilled for 4 h using a Likens-Nickerson apparatus to give colorless residues (Table 1).

Fable 1: Collection and hydrodistillation details of Sarcobatus vermiculatus from southwes	ern Idaho.
---	------------

Plant sample	Coordinate and elevation	Mass aerial parts (g)	Mass essential oil (mg)
#1	43°14′47″N, 116°22′49″W, 704 m	127.46	15.3
#2	43°14′47″N, 116°22′48″W, 704 m	110.53	29.4
#3	43°14′47″N, 116°22′48″W, 704 m	151.05	24.3

2.2 Gas Chromatographic Analysis

The essential oils were analyzed by gas chromatography with flame ionization detection (GC-FID), gas chromatography – mass spectrometry (GC-MS) and chiral GC-MS as previously described ^[5]. Retention index values were determined using a homologous series of *n*-alkanes on a ZB-5ms column using the linear formula of van den Dool and Kratz ^[6]. The essential oil components were identified by comparison of the mass spectral fragmentation patterns and by comparison of retention index (RI) values available in the Adams ^[7], FFNSC 3 ^[8], NIST20 ^[9], and our own in-house database ^[10]. The identification of enantiomers was determined by comparison

of retention times with authentic samples obtained from Sigma-Aldrich (Milwaukee, WI, USA).

3. Results and Discussion

Hydrodistillation of the aerial parts of *S. vermiculatus* gave poor yields (0.012-0.027%) of essential oils as colorless residues. The essential oils were subjected to gas chromatographic analysis (GC-MS, GC-FID, and chiral GC-MS). The chemical compositions of the *S. vermiculatus* samples are shown in Table 2; the enantiomeric distributions of chiral terpenoid constituents are listed in Table 3.

 Table 2: Chemical compositions (%) of the essential oils of Sarcobatus vermiculatus from southwestern Idaho.

RIcalc	RIdb	Compound	#1	#2	#3
799	801	Hexanal	-	0.5	0.5
826	825	2-Furaldehyde	-	1.0	0.5
852	853	(37)-Hexenol	0.1	0.1	0.2
903	905	Hentanal	tr	0.1	0.2
045	042	A A Dimethylkyt 2 anglida	0.1	0.5	0.2
943	942	4,4-Dimetriyibut-2-enolide	0.1	0.1	0.2
949	950	Camphene	-	0.2	0.4
960	959	Benzaldehyde	0.1	0.6	0.7
971	971	Sabinene	-	0.5	-
971	971	Artemiseole	-	-	0.8
977	978	β-Pinene	-	0.4	-
989	989	2-Pentylfuran	_	0.6	0.5
004	006	Vomogi alcohol	0.3	0.0	0.5
1024	990	Tomograconor	0.3	-	0.4
1024	1025	<i>p</i> -Cymene	0.1	0.2	0.3
1028	1030	Limonene	tr	0.2	0.1
1030	1031	β-Phellandrene	0.1	0.3	0.4
1031	1032	1,8-Cineole	0.3	1.0	4.5
1033	1033	Benzyl alcohol	0.3	-	0.1
1056	1056	Artemisia ketone	0.7	1.2	0.2
1030	1030	Dibudromurconol	0.7	0.4	0.2
1070	1070	Dinyaroniyicenoi	0.2	0.4	0.2
10/8	1079	Artemisia alcohol	0.2	-	0.2
1084	1086	Terpinolene	-	0.3	0.3
1099	1101	Linalool	0.3	0.3	0.3
1102	1102	6-Methylhepta-3,5-dien-2-one	0.2	0.2	0.1
1104	1107	Nonanal	0.4	0.8	1.1
1106	1105	a-Thuione	0.7	2.6	1.2
1111	1105	Dhawathad alaahal	0.7	2.0	0.2
1111	1111	Phenethyl alconol	0.4	0.2	0.2
1118	1118	β-Thujone	0.1	0.2	0.1
1146	1145	Camphor	0.3	0.3	2.3
1148	1144	trans-Tagetone	0.4	-	-
1149	1153	1-Phenyl-2-propyn-1-ol	_	0.1	0.4
1163	1162	B. Artemisyl acetate	0.7	0.1	0.3
1105	1102	Thui-1	0.7	0.1	0.3
1108	1109		-	0.5	0.5
1179	1180	Terpinen-4-ol	0.3	0.3	0.4
1205	1206	Decanal	0.1	0.1	0.2
1211	1210	exo-2-Hydroxycineole	0.3	0.1	-
1214	1217	Coumaran	0.8	0.5	0.7
1225	1226	Benzothiazole	03	03	0.2
1306	1220	A Vinvlguaiacol	13.7	11.6	12.8
1300	1309		13.7	11.0	12.8
1352	1356	Eugenol	0.5	1.6	0.3
1380	1380	(<i>E</i>)-β-Damascenone	2.2	1.5	4.5
1394	1394	Vanillin	2.1	0.8	1.5
1420	1424	(E) - β -Caryophyllene	0.5	0.7	0.3
1441	1434	4-Propylresorcinol	0.3	0.4	0.1
1449	1447	Geranyl acetone	0.4	0.4	0.2
1470	1/81	$(F) \beta$ Jonone	0.1	0.1	0.2
14/9	1401		0.3	0.4	0.3
1482	1483	Germacrene D	0.7	0.6	0.4
1484	1483	Davana ether 1	0.3	0.3	0.2
1489	1483	2-Methyl-6-propyldodecane	0.4	0.3	0.1
1499	1496	Capillene	0.4	0.4	0.2
1503	1502	Davana ether 2	1.0	1.0	0.5
1505	1504	Davana ether 3	03	0.3	0.2
1500	1510	trans Calamanana	0.5	1.3	0.1
1520	1519	D d d	-	1.5	0.1
1522	1521	Davana etter 4	0.8	0.4	0.4
1525	1524	Dihydroactinidiolide	0.3	0.3	0.4
1549	1546	α-Elemol	0.2	-	-
1559	a	4-Ethenyl-2,6-dimethoxyphenol	0.4	-	-
1562	1562	(E)-Nerolidol	0.7	1.5	0.5
1579	1577	Davanone	0.2	-	-
1577	1597	Corvonhullana ovide	0.2	0.2	0.2
1301	130/		0.2	0.5	0.2
1643	1642	(Z)-Methyl jasmonate	0.4	1.3	0.5
1655	1656	β-Eudesmol	1.2	0.8	1.0
1802	1805	2-Ethylhexyl salicylate	0.4	0.5	0.4
1842	1841	Phytone	1.4	2.5	1.7
1874	-	Unidentified ^b	-	1.2	0.2
1060	1059	Palmitic acid	10	3.0	5.2
1900	1730		4.7	5.9	0.1
1995	1994	I-Eicosene	0.3	0.3	0.1

2000	2000	Eicosane	0.2	0.3	0.1
2095	2099	1-Heneicosene	0.2	0.4	0.1
2100	2100	Heneicosane	0.5	1.1	0.4
2111	2109	Phytol		0.9	4.2
2132	2128	Linoleic acid	1.1	0.9	3.0
2195	2198	1-Docosene	1.0	1.5	0.7
2200	2200	Docosane	0.7	1.2	0.4
2226	2234	3,5-Dimethoxystilbene	-	-	0.4
2295	2298	1-Tricosene	0.3	0.5	-
2300	2300	Tricosane	5.3	6.9	4.7
2306	2306	2-Heneicosanone	0.7	0.7	0.4
2396	2397	1-Tetracosene	0.9	0.8	0.4
2400	2400	Tetracosane	1.1	1.3	0.6
2496	2496	1-Pentacosene	0.5	0.4	0.3
2500	2500	Pentacosane	9.1	7.6	7.6
2510	2513	2-Tricosanone	3.5	4.0	2.0
2596	2596	1-Hexacosene	-	-	0.2
2600	2600	Hexacosane	0.8	0.7	0.4
2633	2632	Tetracosanal	0.6	1.0	1.0
2663	-	Unidentified ^c	0.5	1.6	0.9
2700	2700	Heptacosane	24.3	14.0	13.7
2713	d	2-Pentacosanone	1.6	1.4	1.1
2800	2800	Octacosane	1.0	0.5	0.4
2807	2810	Squalene	-	-	0.5
2888	2893	Hexacosanal	-	-	0.4
		Monoterpene hydrocarbons	0.2	2.0	1.5
		Oxygenated monoterpenoids	4.8	7.1	11.1
		Sesquiterpene hydrocarbons	1.2	2.5	0.9
		Oxygenated sesquiterpenoids	5.0	4.6	2.9
		Diterpenoids	1.0	0.9	4.2
		Triterpenoids	0.0	0.0	0.5
		Benzenoid aromatics	19.6	16.9	17.9
		Fatty acid derivatives	59.3	52.3	45.9
		Others	5.6	7.6	8.4
		Total identified	96.8	93.9	93.3

 RI_{calc} = Retention index calculated with respect to a homologous series of n-alkanes using the linear formula of van den Dool and Kratz ⁶. RI_{db} = Retention index from the databases (Adams ^[7], FFNSC 3 ^[8], NIST20 ^[9], Satyal ^[10]). tr = trace (< 0.05%). ^a The MS comparison (NIST20) gave 88% match, but an RI value was not available for comparison.

^b MS(EI): 234(14%), 220(17%), 219(100%), 191(11%), 163(21%), 145(30%), 109(17%), 105(13%), 93(15%), 91(16%), 55(19%), 41(15%).

^c MS(EI): 337(4%), 281(2%), 267(2%), 253(2%), 239(2%), 225(4%), 211(3%), 197(4%), 183(5%), 169(6%), 155(7%), 141(10%), 127(13%),

113(16%), 99(25%), 85(54%), 71(71%), 57(100%), 43(60%). The MS looks like a normal alkane, but the RI is not correct.

^d The RI for 2-pentacosanone was not available, but by homology with 2-tricosanone, it should be around 2713.

The yields of essential oil were very low, so *S. vermiculatus* is not a viable source of essential oil. The essential oils were dominated by fatty-acid derived compounds (45.9-59.3%), including heptacosane (13.7-24.3%), pentacosane (7.6-9.1%), tricosane (4.7-6.9%), and palmitic acid (3.9-5.3%). The concentrations of terpenoid components were relatively low with monoterpenoids ranging from 5.0% to 12.5% and sesquiterpenoids 3.9-7.1%.

Benzenoid aromatics were relatively abundant (16.9-19.6%), and the phenolic compound, 4-vinylguaiacol, was particularly plentiful (11.6-13.7%). 4-Vinylguaiacol is a decomposition product of ferulic acid and is responsible for an off-flavor of orange juice ^[11] and beer ^[12] and is produced via thermal ^[13] or enzymatic ^[14, 15] decarboxylation of ferulic acid. The compound has shown notable antibacterial and antifungal activity ^[16] as well as cytotoxic activity against human colorectal cancer cells ^[17].

Although detected in relatively small concentrations, benzothiazole (0.2-0.3%) was unexpected. The compound has been reported in cranberry (*Vaccinium macrocarpon* Aiton) fruit ^[18] and guava (*Psidium guajava* L.) fruit ^[19]. Benzothiazole has shown insecticidal activity against the red flour beetle (*Tribolium castaneum* (Herbst)) ^[20].

Although terpenoid components were in relatively low concentrations in S. vermiculatus essential oils, it was possible to carry out chiral GC-MS (Table 3). The (-)enantiomers were only detected for camphene, camphor, (E)- β -caryophyllene, and germacrene D. The (+)-enantiomers were the exclusive stereoisomers for β -pinene, α -thujone, and (E)-nerolidol. Both enantiomers of camphene are widespread in essential oils [21]. (-)-camphor is less common than (+)camphor, but it is the major enantiomer in Tanacetum parthenium Sch. Bip.^[21] as well as Coriandrum sativum L. herb [22] and Sassafras albidum (Nutt.) Nees wood [23] essential oils. (-)-(E)- β -caryophyllene is the common enantiomer found in higher plants while the (+)-enantiomer is found in liverworts [21]. Both (-)- and (+)-germacrene D cooccur in different ratios in many essential oils [24]. However, (-)-germacrene D was the predominant enantiomer in Gynoxys miniphylla Cuatrec. [25] and Pinus ponderosa Douglas ex C. Lawson ^[26] essential oils, while the (+)enantiomer dominated in S. albidum [23] and Agastache foeniculum (Pursch) Kuntze ^[27] essential oils. (S,E)-(+)-Nerolidol is the more common enantiomer ^[21].

 Table 3: Enantiomeric distribution of chiral terpenoid components of Sarcobatus vermiculatus.

Compound	#1		#2		#3	
Compound	RT (min)	EE	RT (min)	EE	RT (min)	EE
(-)-Camphene	nd		nd		17.99	100
(+)-β-Pinene	nd		20.43	100	nd	
(–)-β-Phellandrene	nd		26.46	100	nd	
(+)-α-Thujone	nd		45.16	100	45.12	100
(-)-Camphor	nd		nd		50.16	100
$(-)-(E)-\beta$ -Caryophyllene	69.39	100	69.39	100	nd	
(-)-Germacrene D	nd		73.73	100	nd	
(+)-(E)-Nerolidol	83.60	100	83.61	100	nd	

RT = Retention time. nd = Not detected. EE = Enantiomeric excess.

4. Conclusions

This is the first report of the volatile phytochemistry of *Sarcobatus vermiculatus*. The essential oil yields were paltry, so this plant cannot be considered as a viable source of essential oils. Furthermore, terpenoid components were found in low concentrations, but fatty-acid derived compounds and benzenoid aromatics were relatively abundant.

5. Acknowledgments

This work was carried out as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

6. References

- 1. Flora of North America Editorial Committee. *Sarcobatus vermiculatus*. Flora of North America. http://www.efloras.org/florataxon.aspx?flora_id=1&taxo n_id=242415620. Accessed February 15, 2023.
- Branson FA, Miller RF, McQueen IS. Geographic distribution and factors affecting the distribution of salt desert shrubs in the United States. J Range Manag. 1967;20(5):287-296. doi:10.2307/3895974
- Behnke H-D. Sarcobataceae A new family of Caryophyllales. Taxon. 1997;46(3):495-507. doi:10.2307/1224390
- Weber DJ, Gul B, Khan A, *et al.* Composition of vegetable oil from seeds of native halophytes. USDA For Serv Proc RMRS-P-21. 2001:287-290. http://www.fs.fed.us/rm/pubs/rmrs_p021/rmrs_p021_287 _290.pdf.
- Swor K, Satyal P, Timsina S, Setzer WN. Chemical composition and terpenoid enantiomeric distribution of the essential oil of *Artemisia tridentata* subsp. *tridentata* from southwestern Idaho. Nat Prod Commun. 2022;17(7):1934578X2211174. doi:10.1177/1934578x221117417
- Van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A. 1963;11:463-471. doi:10.1016/S0021-9673(01)80947-X
- Adams RP. Identification of Essential Oil Components by Gas Chromatography / Mass Spectrometry. 4th ed. Carol Stream, IL, USA: Allured Publishing; 2007.
- 8. Mondello L. FFNSC 3. Columbia, Maryland, USA: Shimadzu Scientific Instruments; c2016.
- 9. NIST20. Gaithersburg, Maryland, USA: National Institute of Standards and Technology; c2020.
- 10. Satyal P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically

Active Novel Chemotypes in Essential Oils, Ph.D. dissertation; c2015.

- Peleg H, Naim M, Zehavi U, Rouseff RL, Nagy S. Pathways of 4-vinylguaiacol formation from ferulic acid in model solutions of orange juice. J Agric Food Chem. 1992;40(5):764-767. doi:10.1021/jf00017a011
- Coghe S, Benoot K, Delvaux F, Vanderhaegen B, Delvaux FR. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: Indications for feruloyl esterase activity in *Saccharomyces cerevisiae*. J Agric Food Chem. 2004;52(3):602-608. doi:10.1021/jf0346556
- Dorfner R, Ferge T, Kettrup A, Zimmermann R, Yeretzian C. Real-time monitoring of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting by resonant laser ionization time-of-flight mass spectrometry. J Agric Food Chem. 2003;51(19):5768-5773. doi:10.1021/jf0341767
- Li L, Long L, Ding S. Bioproduction of highconcentration 4-vinylguaiacol using whole-cell catalysis harboring an organic solvent-tolerant phenolic acid decarboxylase from *Bacillus atrophaeus*. Front Microbiol. 2019;10:1798. doi:10.3389/fmicb.2019.01798
- Detering T, Mundry K, Berger RG. Generation of 4vinylguaiacol through a novel high-affinity ferulic acid decarboxylase to obtain smoke flavours without carcinogenic contaminants. PLoS One. 2021;15(12):e0244290.

doi:10.1371/journal.pone.0244290

- Kobayashi A, Kim MJ, Kawazu K. Uptake and exudation of phenolic compounds by wheat and antimicrobial components of the root exudate. Zeitschrift fur Naturforsch - Sect C J Biosci. 1996;51(7-8):527-533. doi:10.1515/znc-1996-7-811
- Luo Y, Wang C-Z, Sawadogo R, *et al.* 4-Vinylguaiacol, an active metabolite of ferulic acid by enteric microbiota and probiotics, possesses significant activities against drug-resistant human colorectal cancer cells. ACS Omega. 2021;6(7):4551-4561. doi:10.1021/acsomega.0c04394
- 18. Anjou K, Von Sydow E. The aroma of cranberries II. *Vaccinium macrocarpon* Ait. Acta Chem Scand. 1967;21(8):2076-2082.
- Clery RA, Hammond CJ. New sulfur components of pink guava fruit (*Psidium guajava* L.). J Essent Oil Res. 2008;20(4):315-317.
 - doi:https://doi.org/10.1080/10412905.2008.9700021
- Cui K, He L, Zhang Z, Zhang T, Mu W, Liu F. Evaluation of the efficacy of benzothiazole against the red flour beetle, *Tribolium castaneum* (Herbst). Pest Manag Sci. 2020;76(8):2726-2735. doi:10.1002/ps.5819
- 21. Dictionary of Natural Products. Dictionary of Natural Products on DVD. Boca Raton, Florida: CRC Press; c2022.
- Satyal P, Setzer WN. Chemical compositions of commercial essential oils from *Coriandrum sativum* fruits and aerial parts. Nat Prod Commun. 2020;15(7):1934578X20933067. doi:10.1177/1934578X20933067
- 23. Lawson SK, Satyal P, Setzer WN. The wood essential oil of *Sassafras albidum*. Am J Essent Oils Nat Prod. 2022;10(1):1-5.
- 24. Niwa M, Iguchi M, Yamamura S. Co-occurrence of (-) and (+)-germacrene-D in *Solidago altissima* L.: Determination of the optical rotation of optically pure

germacrene-D. Chem Pharm Bull. 1980;28(3):997-999.

- 25. Malagón O, Cartuche P, Montaño A, Cumbicus N, Gilardoni G. A new essential oil from the leaves of the endemic Andean species *Gynoxys miniphylla* Cuatrec. (Asteraceae): Chemical and enantioselective analyses. Plants. 2022;11(3):398. doi: https://doi.org/10.3390/plants11030398
- 26. Ankney E, Swor K, Satyal P, Setzer WN. Essential oil compositions of *Pinus* species (*P. contorta* subsp. contorta, *P. ponderosa* var. ponderosa, and *P. flexilis*);
- *contorta, P. ponderosa* var. *ponderosa*, and *P. flexus*); enantiomeric distribution of terpenoids in *Pinus* species. Molecules. 2022;27(17):5658. doi: https://doi.org/10.3390/molecules27175658
- 27. Lawson SK, Satyal P, Setzer WN. The volatile phytochemistry of seven Native American aromatic medicinal plants. Plants. 2021;10(6):1061. doi:10.3390/plants10061061