Susceptibility of *Tetranychus urticae* Koch (Acari: Tetranychidae) to essential oil mixtures

Julielson Oliveira Ataíde, Isac da Cruz Louzada, Hugo Bolzoni Zago, Luciano Menini and Victor Dias Pirovani

Abstract

The two-spotted spider mite *Tetranychus urticae* is an important pest in many cultures of economic relevance. The search for methods to control this plague like the use of essential oils can reduce the application of synthetic acaricides. Therefore the aim of this work was to evaluate the lethal, sublethal and synergistic effects of essential oils *Cymbopogon citratus* (lemongrass), *Mentha piperita* (pepper mint) *Syzgium aromaticum* (clove) and *Citrus limonum* (siciian lemon) on adult females of *Tetranychus urticae* Koch (Acari: Tetranychidae). The results show that essential oils and oil mixtures present toxicity on mites. Essential lemongrass oil mixture with Clove oil showed synergistic effectwith LC50 and LC90 of 0.91% (v v−1) and 2.85% (v v−1), respectively. The binary mixtures of pepper mint essential oils with lemongrass, and pepper mint with Clove presented about 60 to 64% of toxicity effect. Mixtures of essential oils have had significant results for future use in the production of a toxic agent.

Keywords: Aripedacarid, aromatic plants, monoterpenes, sesquiterpenes

1. Introduction

The two-spotted spider mite, *Tetranychus urticae* (Koch) (Acari: Tetranychidae), is a poly phytophagous species which can eat 1100 plant species, and is also an important plague in greenhouse and field cultivation[1]. Most useful methods to control two-spotted spider mite are synthetic acaricides and predator mites *Phytoseiulus persimilis* Athias-Henriot (Acari: Phytoseiidae) and *Neoseiulus californicus* (McGregor) (Acari: Phytoseiidae) [2-4].

The use of synthetic acaricides can take serious risks to not target organisms, as mammals, aquatic animals, birds and human beings [5, 6]. As an alternative to synthetic acaricides, essential plants oils constitute excellent candidates to infestation control, involving many ways to present a smaller toxicity in mammals and lower persistence in the environment [7]. The essential oil extracted from aromatic plants has been shown as a hopeful alternative to present a smaller toxicity in mammals and lower persistence in the environment [8].

The aim of this work was to evaluate the lethal, sublethal and synergistic effect in essential oils made from *Cymbopogon citratus* (D.C.) Stapf (Poaceae) (lemongrass), *Mentha piperita L.* (Lamiaceae) (Pepper mint), *Syzgium aromaticum* (L.) Merr. & LM Perry (Myrtaceae) (Clove) and *Citrus limonum* Risso (Rutaceae) (Siciian lemon) about *T. urticae*.

2. Materials and methods

2.1 Biological material

The *T. urticae* mite was raised in jack bean plants, *Canavalia ensiformis* (L.) DC (Fabaceae), in climatized rooms at 25 ± 1 °C, 65 ± 3% RH and photo phase of 12h.

2.2 Essential oils acquisition

The essential oils are of commercial origin and were acquired from the company Phytoterápica Ltda, located at Nova Cantareira street, 2627 – Tucuruvi– São Paulo, Zip code: 02341-000, São Paulo - Brazil.
2.3 Essential oils solutions preparation and mixtures
The mixture of essential oils, *Cymbopogon citratus* (lemongrass), *Mentha piperita* (pepper mint), *Syzygium aromaticum* (Clove) and *Citrus limonum* (Sicilian Lemon) were made proportionally as shown in Table 1

![Table 1: Essential oils mixture proportions](image)

Table 1: Essential oils mixture proportions

<table>
<thead>
<tr>
<th>Mixtures</th>
<th>Mixture Proportion</th>
<th>Essential Oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:1:1:1</td>
<td>a lemongrass + b peppermint + c clove + d sicilian lemon</td>
</tr>
<tr>
<td>2</td>
<td>1:1</td>
<td>lemongrass + peppermint</td>
</tr>
<tr>
<td>3</td>
<td>1:1</td>
<td>lemongrass + clove</td>
</tr>
<tr>
<td>4</td>
<td>1:1</td>
<td>lemongrass + sicilian lemon</td>
</tr>
<tr>
<td>5</td>
<td>1:1</td>
<td>peppermint + clove</td>
</tr>
<tr>
<td>6</td>
<td>1:1</td>
<td>peppermint + sicilian lemon</td>
</tr>
<tr>
<td>7</td>
<td>1:1</td>
<td>clove + sicilian lemon</td>
</tr>
</tbody>
</table>

Scientific name of the plant:

- a *Cymbopogon citratus*
- b *Mentha piperita*
- c *Syzygium aromaticum*
- d *Citrus limonum*

The preparation of essential oils and the respective mixtures (Table 1) was held to 2.0% (v/v), Tween® 80 (0.05% v/v), ethanol 0.25% (v/v), and distilled water to 97.70% (v/v), Tween® 80 (0.05% v/v), ethanol 0.25% (v/v) and distilled water 99.70% (v/v) were used to the control.

2.4 Chemical composition determination of essential oils
The essential oils samples were analysed by gas chromatography with an ionization flame detector (GC-FID) (Shimadzu device GC-2010 Plus) and by gas chromatography attached to mass spectrometry (GC-MS) (Shimadzu device GCMS-2010). The essential oils samples were exposed under two chromatography conditions in those two analyses: fused silica capillary column (30 mm × 0.25 mm) and N2 (analysed by GC-FID) or He (analysed by GC-MS) as carrier gas. GC-MS analysis were done with an equipment operated by electronic impact with energy impact of 70eV; scanning speed 1.000; scan interval of 0.50 fragments / second and fragments detected from 29 to 400 (m/z).

The component identification was made by a comparison between its mass spectrum with the available data in the spectrum database Willey7, NIST05, NIST05s, with a comparison between its mass spectrum with the available data in the literature database LTPRI. A homogeneous mixture of linear alkanes (C7 to C40) was used to calculate the LTPRI and the amount calculated to each compound was likened to the literature amounts.

2.5 High toxicity test by contact
Essential oils toxicity and its mixtures were tested in adult females of *T. urticae* from the adapted method of Paes et al. [13].

Jack bean leaf discs with 4.5 cm of diameter were put in a 6.5-cm diameter acrylic Gerbox® with a 5-cm deep layer and in agar-agar water solution at 3% (m/v). A calibrated airbrush was use data pressure of 15 lb.pol-2 at a distance of 60 centimeters to spread essential oils and their mixtures.

Each foliar disc was infested by 10 adult females (24 hours old) obtained by lab creation. Ten repetitions were evaluated for each essential oil and its related mixtures (Table 1). The bio test was led in climatized chambers (temperature of 25±1°C, 70±10% RH and photo phase of 12 hours). After 24 hours of exposure to the treatments, the number of dead females was counted. The mites were touched by a thin brush to confirm the mortality. Still mites or those with a displacement shorter than their own body size were considered dead.

2.6 Lethal concentration estimate
In a preliminary test, the mixtures of essential oils were used in a concentration of 2% (v/v) to check the toxicity about the female adults of *T. urticae*. The essential oils and the mixtures that obtained a minimum mortality of 80% were submitted to a lethal concentration estimation, with the following concentration (v/v): 0.0 (control); 0.4; 0.5; 0.6; 0.8; 1.0; 1.25; 1.6% (v/v). The lethal concentration LC50 and LC90 were estimated by Probit progression.

2.7 Sublethal effect test
After 24 hours of essential oils application in lethal effect by contact bio test, the female two-spotted spider mite survivors were taken off the leaf discs with the help of thin brushes. Posteriorly, 50 eggs were accounted with the help of Binocular Tecnival ® magnifying glasses. The eggs were kept in climatized chambers (temperature of 25±1°C, 70±10% RH and photo phase of 12 hours) for five days to check their hatch.

2.8 Data analysis
The completely randomized design (CRD) was used for the test of the lethal effect (DIC), with comparative averages by Scott-Knott test (p≤0.05) and the correct mortality rates using Abbott formula (1925) in the [15]. However an adjusted mortality analysis about the treatments was not applied to the sublethal effect.

3. Results
3.1 Essential oils chemical composition
The individual chemical components with 1% superior relative area were identified by comparison between relative retention of the peaks with the library mass spectrum of essential oils, and by comparison between LTTPRI index and literature data (Table 2). The major components with a bigger relative area were eugenol (85.09%), menthol (69.90%), geranial (66.47%) and limonene (76.62%) Fig 1. 19 components were identified, and the essential oil which presented a number of more components was *Mentha piperita* (pepper mint).

Among the components of four essential oils, 15 were monoterpenes, two were sesquiterpenes and two were phenolics. Among the monoterpenes, limonene (76.62%) showed a bigger relative area and was identified only in the sicilian lemon essential oil. The Clove essential oil showed a phenolic component (eugenol) with a relative area of 85.09% (Table 2).
Table 2: Essential oils composition identification by LTPRI Index and Mass Spectrometry (GC / MS)\(^a\)

<table>
<thead>
<tr>
<th>EssentialOils</th>
<th>Components</th>
<th>Retentionindex (^b)</th>
<th>RelativeArea (%) (^d)</th>
<th>RetentionRate (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syzygiumaromaticum (clove)</td>
<td>Linalool</td>
<td>17.155</td>
<td>2.62</td>
<td>1102</td>
</tr>
<tr>
<td></td>
<td>Eugenol</td>
<td>29.045</td>
<td>85.09</td>
<td>1360</td>
</tr>
<tr>
<td></td>
<td>trans-Caryophyllene</td>
<td>31.540</td>
<td>2.91</td>
<td>1416</td>
</tr>
<tr>
<td></td>
<td>Eugenylacetate</td>
<td>36.460</td>
<td>2.15</td>
<td>1531</td>
</tr>
<tr>
<td>Mentha piperita (peppermint)</td>
<td>Eucalyptol</td>
<td>13.680</td>
<td>2.84</td>
<td>1030</td>
</tr>
<tr>
<td></td>
<td>Isomenthone</td>
<td>19.590</td>
<td>14.73</td>
<td>1158</td>
</tr>
<tr>
<td></td>
<td>Isopulegol</td>
<td>20.045</td>
<td>6.07</td>
<td>1163</td>
</tr>
<tr>
<td></td>
<td>Menthol</td>
<td>20.500</td>
<td>69.90</td>
<td>1167</td>
</tr>
<tr>
<td></td>
<td>Menthylacetate</td>
<td>26.215</td>
<td>4.04</td>
<td>1295</td>
</tr>
<tr>
<td></td>
<td>trans-Caryophyllene</td>
<td>31.515</td>
<td>1.09</td>
<td>1416</td>
</tr>
<tr>
<td>Cymopogon citratus (lemongrass)</td>
<td>Camphene</td>
<td>9.730</td>
<td>3.42</td>
<td>947</td>
</tr>
<tr>
<td></td>
<td>Geraniol</td>
<td>24.525</td>
<td>6.80</td>
<td>1252</td>
</tr>
<tr>
<td></td>
<td>Geranial</td>
<td>25.180</td>
<td>66.47</td>
<td>1273</td>
</tr>
<tr>
<td></td>
<td>Geranylacetate</td>
<td>30.280</td>
<td>4.77</td>
<td>1386</td>
</tr>
<tr>
<td>Citrus limonum (sicilian lemon)</td>
<td>α-Pinene</td>
<td>9.165</td>
<td>2.81</td>
<td>933</td>
</tr>
<tr>
<td></td>
<td>β-Pinene</td>
<td>10.985</td>
<td>9.77</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>β-Myrcene</td>
<td>11.930</td>
<td>1.52</td>
<td>993</td>
</tr>
<tr>
<td></td>
<td>Limonene</td>
<td>13.575</td>
<td>76.62</td>
<td>1028</td>
</tr>
</tbody>
</table>

\(^a\) The compounds were identified by LTPRI Index (GC/FID) and Mass Spectrometry (GC/MS). \(^b\) Tabulated Retention index \[^16\].

\(^c\) Retention index calculated from data obtained by sampling of saturated n-alkanes (C7-C40), \(^d\) Compounds with relative areas >1% were identified.

![Chemical structure of Eugenol](image1)

![Chemical structure of Menthol](image2)

![Chemical structure of Geranial](image3)

![Chemical structure of Limonene](image4)

Fig 1: Chemical structure of the main components

3.2 Essential oil lethal effect

The results showed that the 2% vv\(^-1\) mixture concentration presents a toxicity on adult female and on the eggs of *T. urticae* (Fig. 2 and Fig 3). In advance, the mixtures of lemongrass (+) pepper mint and pepper mint (+) clove showed a toxic effect between 60 and 64%. However, the mixtures of lemongrass (+) pepper mint (+) clove (+) sicilian lemon, lemongrass (+) sicilian lemon, pepper mint (+) sicilian lemon and clove (+) Sicilian lemon provided toxicity under 60%.

The mixture of lemongrass (+) clove oils showed a synergetic effect, with LC\(_{50}\) and LC\(_{90}\) of 0.91% (v v\(^-1\)) and 2.85% (v v\(^-1\)), respectively (Table 3).
Fig 2: Essential oils toxicity and their mixtures checked in *T. urticae* adult females. Treatments followed by the same letters do not differ statistically from each other by the Tukey test at 5% probability.

Table 3: Lethal concentration of mixture *Cymbopogon citratus* (lemongrass) + *Syzygium aromaticum* (clove) on *T. urticae* adult females

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N*</th>
<th>GL</th>
<th>Slope±SE</th>
<th>χ^2</th>
<th>Lethal concentration ((v v$^{-1}$) IC 95%$^\text{a}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>leLemongrass+Clove</td>
<td>880</td>
<td>6</td>
<td>2.58 ± 0.10</td>
<td>6.05</td>
<td>0.91(0.84±1.00) 2.85(2.34±3.72)</td>
</tr>
</tbody>
</table>

aInsectNumber
bDegreesoffreedom
cSlope of the line
dChi square
eReliable Span

3.3 Essential oils sublethal effect

To the Sublethal effect, the essential oil of Clove and the mixtures Lemongrass (+) pepper mint made 100% of the eggs unfeasible. However, the mixtures Lemongrass (+) pepper mint (+) Clove (+) Sicilian Lemon and Clove (+) Sicilian Lemon made the eggs unfeasible because of Clove essential oils. Nevertheless, when Clove (+) and Pepper mint were mixed it showed an antagonism. The other treatments made between 40 and 80% of the eggs unfeasible Fig. 3.

Fig 3: Sublethal effect of essential oils and their mixtures on *Tetranychus urticae* (Acari: Tetranychidae) eggs. Treatments followed by the same letters do not differ statistically from each other by the Tukey test at 5% probability.
4. Discussion

The lethal effect of the essential oils can be added to the mixture preparation, as observed with lemongrass (+) clove, which showed toxicity in T. urticae adult female (LC₅₀ 0.91 ×10⁻²), similar to synthetic insecticides Clorfenapir and Propargite [17, 18].

Although it is difficult to precisely define the effectiveness of essential oils and their mixtures, the essential oils that contain monoterpene class components in the constitution play a role in lipophilicity by disabling protein synthesis, a major part of the insecticidal activity of substances [19, 20]. Tak et al. showed that the major components of the essential oil of Rosmarinus officinalis L. (Lamiaceae) belonging to the monoterpene class cause high toxicity by penetrating the Trichoplusia ni (Lepidoptera, Noctuidae) larvae [21]. A possible explanation for the high toxicity demonstrated by the mixture of clove and lemongrass would be the presence of components of the monoterpene class geraniol, linalol and geranyl acetate. Another explanation for the increased toxicity of essential oils that have monoterpene class ingredients in their constitution may be due to two main properties: Saturated compounds (contain simple carbon-carbon bonds outside the benzene ring) and presence of hydroxyl groups in the benzene ring [22, 23]. These structural properties allow ingredients of the monoterpene class to penetrate rapidly through the cuticle that inhibits the detoxification in insect metabolism [24].

Monoterpenoids can participate in different metabolic pathways. Linalool and terpinen-4-ol a monoterpene inhibit AChE, through positive allosteric modulation of GABA and competition with octopamine for binding to its receptor [25]. Monoterpenoids are able to easily penetrate insects due to their lipophilic property and interfere with the physiological functions of insects [26].

Enan and De-Oliveira et al. suggested that the toxicity of essential oil constituents is related to the insect’s octopaminergic nervous system. However, there are other suggestions that some monoterpene may inhibit cytochrome P450-dependent monoxygenases [27, 28]. Therefore, the monoterpene destination locations can be multiple [29].

The essential oils usually consist of complex mixtures of substances [30] that show different effects on insects, high toxicity, natural repellency and sublethal effect [31]. For the sublethal effect, clove essential oil and mixtures of lemongrass (+) pepper mint, lemongrass (+) pepper mint (+) clove (+) sicilian lemon and clove (+) sicilian lemon prevented the hatching of eggs, because the eggs are in contact with the essential oils present in the bean leaves, causing the penetration of the chemical components of the monoterpene class present in the essential oils. Rezaei et al. revealed in their work that essential oil from C. zeylanicum the same species of the present work inhibited the hatching of eggs T. urticae [32]. However, monoterpene class components have shown toxicity in eggs, larvae and adults in various insect species of medical, veterinary and agricultural importance [33-36].

However, mixture of essential oils can have an antagonistic effect due to the complexity of their substances [19]. The antagonistic presented in the clove (+) pepper mint mixture may be related to the majority components belonging to different classes, monoterpene and phenolics, [37] noted in his work that when the essential oils of Pinus nigra Arnold Italian var. (Pinaceae) were mixed with the essential oil of Satureja montana L. subsp. montana (Lamiaceae), which had major components of different classes, were antagonistic.

5. Conclusion

Mixtures of essential oils have had significant results for future use in the production of a toxic agent. However, for the formulation of products containing the essential oils in the mixtures of the present work as active ingredient, further studies are needed to evaluate selectivity towards natural enemies and pollinating insects, mammalian toxicity and cost-effective of the product formulated.

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support.

6. References

13. Paes JPP, Rondelli VM, Costa AV, Vianna UR, Queiroz...
VT. Caracterização química e efeito do óleo essencial de
Erva-De-Santa-Maria sobre o ácaro-rajado de
14. Finney DJ. Probit Analysis, Cambridge University,
Londres, 1971.
15. R development core team R. A language and
environment for statistical computing, reference index
16. Adams RP. Identification of essential oil components by
gas chromatography/mass spectrometry. Allured
17. Bozhgani SS, Ghobadi H, Riahi E. Sublethal effects of
chlorfenapyr on the life table parameters of two spotted
spider mite, Tetranychus urticae (Acari: Tetranychidae),
Syst and Appl Acarol. 2018; 23:1342-1351.
Screening for suitable chemical acaricides against two-
spotted spider mites, Tetranychus urticae, on greenhouse
strawberries in China Ecotox and Envir Saf. 2018;
163:63-68.
19. Pavela R. Acute toxicity and synergistic and antagonistic
effects of the aromatic compounds of some essential oils
against Culex quinquefasciatus say larvae Paras Res.
2015; 114:3853-388.
20. Ryan MF, Byrne O. Plant-insect coevolution and
inhibition of acetylcholinesterase, J Chem Ecol. 1988;
21. Tak JH, Jovel E, Isman MB. Comparative and synergistic
activity of Rosmarinus officinalis L. essential oil
constituents against the larva and an ovarian cell line of
the cabbage Looper, Trichoplusia ni (Lepidoptera:
22. Phillips AK, Appel AG, Sims SR. Topical toxicity of
esential oils to the German cockroach (Dictyoptera:
Blattellidae), J Econ Entomol, 2010; 103:448-459.
23. Rice PJ, Coats JR. Insecticidal properties of several
monoterpenoids to the house fly (Diptera: Muscidae), red
flour beetle (Coleoptera: Tenebrionidae), and southern
corn rootworm (Coleoptera: Chrysomelidae), J Econ
Entomol. 1994; 87:1172-1179.
24. Yu SJ. The toxicology and biochemistry of insecticides,
2nd Ed, Londres: CRS Press, Taylor & Francis group,
2014, 380.
Geng Z et al. Insecticidal and repellent efficacy against
stored-product insects of oxygenated monoterpenes and
2-dodecanone of the essential oil from Zanthoxylum
26. Lee S, Peterson CJ, Coats JR. Fumigation toxicity
ofmonoterpenoids to several stored product insects, J
27. Enan EE. Insecticidal activity of essential oils:
Octopaminergic sites of action Comp Bioch and Phys
Part. 2001; 130:325-337.
28. De-oliveira AC, Ribeiro-pinto LF, Paumgarten JR. In
vitro inhibition of CYP2B1 monooxygenase by myrce
and other monoterpenoid compounds Tox Lett. 1997;
92:39-46.
29. Badawy MEI, El-arami SAA, Abdelgaleil SAM.
Acaricidal and quantitative structure activity relationship
of monoterpenes against the two-spotted spider mite,
30. Lee M, Park J, Lee H. Acaricidal toxicities and
synergistic activities of Salvia lavandulifolia oil
constituents against synanthropic mites Pest Manag Sci.
2018; 2468-2479.
31. Isman MB. Botanical insecticides, deterrents, and
repellents in modern agriculture and an increasingly
32. Rezaei R, Karimi J, Abbaspour H, Askarianzadeh A.
Sublethal effects of essential oil of Cinnamomum
zylamicum Blume on life expectancy (ex) and age-
specific fertility (mx) of two-spotted spider mite,
Tetranychus urticae Koch (Acari: Tetranychidae) Arc of
33. Tabari MA, Youssefi MR, Barimani A, Araghi A.
Carvacrol as a potent natural acaricide against
34. Masoumi F, Youssefi MR, Tabari MA. Combination of
carvacrol and thymol against the poultry red mite
(Dermanysus gallinae). Parasitol Res.2016; 115:4239-
4243.
35. Tabari MA, Youssefi R, Maggi F, Benelli G. Toxic and
repellent activity of selected Monoterpeneoils (Thymol,
carvacrol and linalool) against the castor bean tick,
Ixodes ricinus (Acari: Ixodidae) vet paras. 2015; 245:86-
91.
36. Koliopoulos G, Pittarakili D, Kioulos E, Michaelakis E,
Tzakou O. Chemical composition and larvicidal
evaluation of Masha, Salvia, and Melissa essential oils
averest the nile virus mosquito Culexpipterus Paras
37. Benelli G, Pavela R, Canale A, Cianfaglione K,
Ciaschetti G, Conti F et al. Acute larvicidal toxicity of
five essential oils (Pinus nigra, Hyssopus officinalis,
Satureja montana, Aloysia citrodora and Pelargonium
graveolens) against the filariasis vector Culex
quiquefasciatus: Synergistic and antagonistic effects