

American Journal of Essential Oils and Natural Products

Available online at www.essencejournal.com

ISSN: 2321-9114 AJEONP 2019; 7(4): 15-17 © 2019 AkiNik Publications Received: 07-08-2019 Accepted: 10-09-2019

Sims K Lawson Department of Chemistry, University of Alabama in Huntsville, AL 35899, USA

Layla G Sharp Department of Chemistry, University of Alabama in Huntsville, AL 35899, USA

Prabodh Satyal Aromatic Plant Research Center, 230 N 1200 E, Suite 100 Lehi, UT 84043, USA

William N Setzer Department of Chemistry, University of Alabama in Huntsville, AL 35899, USA

Corresponding Author: William N Setzer Department of Chemistry, University of Alabama in Huntsville, AL 35899, USA

Chemical composition of the essential oil from the aerial parts of *Boltonia asteroides* from North Alabama

Sims K Lawson, Layla G Sharp, Prabodh Satyal and William N Setzer

Abstract

The aerial parts of *Boltonia asteroides*, growing wild in north Alabama, have been collected, the essential oil obtained by hydrodistillation, and the essential oil analyzed by gas chromatography – mass spectrometry. The major components of *B. asteroides* were germacrene D (47.4%), dehydrolachnophyllum ester A (15.4%), and β -pinene (7.3%).

Keywords: False aster, false chamomile, Asteraceae, germacrene D, dehydrolachnophyllum ester

1. Introduction

Boltonia asteroides (L.) L'Hér. (false aster or false chamomile, Asteraceae, tribe Astereae) is a rhizotomaceous perennial herb native to eastern North America, and is found from the Dakotas south through Louisiana, Mississippi, and Alabama ^[1]. The plant has small (ca. 2 cm) daisy-like flowers with white ray florets with yellow disk florets (Figure 1) ^[2, 3]. A phytochemical study by Díaz and co-workers from plants collected from South Carolina revealed the aerial parts to contain several menthane and acyclic monoterpenoids, cadinane sesquiterpenoids, and acetylenic lactones ^[4]. As part of our continuing investigations on the essential oils of north Alabama Asteraceae ^[5–7] we have collected and analyzed the essential oil from the aerial parts of *B. asteroides*. To our knowledge, the essential oil from this plant has not been previously examined.

Fig 1: Boltonia asteroides (L.) L'Her. Photograph by S.K. Lawson.

2. Materials and Methods

2.1 Plant Material

The aerial parts of *B. asteroides* were collected on 12 August 2018 from the Flint River Greenway in north Alabama ($34^{\circ}38'40''N$, $86^{\circ}27'22''W$, elev. 180 m). The plant was identified by S.K. Lawson; a voucher specimen (20180812-110757) has been deposited in the University of Alabama in Huntsville herbarium. The fresh plant material (49.09 g) was hydrodistilled using a Likens-Nickerson apparatus, with continuous extraction with CH₂Cl₂, for 3 h to give a pale-yellow essential oil (1.0 mg).

2.2 Gas Chromatographic – Mass Spectral Analysis

The essential oil of *B. asteroides* was analyzed by GC-MS, as described previously $^{[8,9]}$, using a Shimadzu GC-MS-QP2010 Ultra fitted with a Phenomenex ZB-5ms column. Identification of the essential oil components was determined by comparison of their retention indices and

their mass spectral fragmentation patterns with those in the literature ^[10] or in our in-house library.

3. Results and Discussion

The essential oil from hydrodistillation of the aerial parts of *B. asteroides* was obtained in very low yield (0.002%). The chemical composition of *B. asteroides* essential oil is compiled in Table 1. The essential oil was dominated by sesquiterpene hydrocarbons, including germacrene D (47.4%), the diacetylene (*Z*,*E*)-matricaria ester (15.4%), and the monoterpene β -pinene (7.3%). The presence of the diacetylenic compounds (*Z*)-lachnophyllum ester and (*Z*,*E*)-matricaria ester is consistent with the acetylenic compounds matricaria lactone, 8-decen-6-yn-4-olide, and 9-hydroxy-7-

decen-5-yn-4-olide, that were previously characterized by Díaz and co-workers^[4]. Diacetylenes have been found in several species of the Asteraceae, particularly in the tribes Anthemideae, Astereae, and Lactuceae^[11]. The C₁₀ diacetylenes lachnophyllum ester and matricaria ester have been reported in the genera *Conyza*^[12], *Erigeron*^[13], and*Matricaria*^[14]. Additionally, germacrene D has been found to dominate the leaf essential oils of several species of Asteraceae^[5,7,15–17]. In spite of the common name of *B. asteroides*, false chamomile, the essential oil chemistry of *B. asteroides* is very different from chamomile, *Matricaria chamomilla*^[18]. On the other hand, there are species of *Aster* that are rich in germacrene D, including *A. novae-angliae*^[5], *A. spathulifolius*^[19], and *A. albanicus*^[20].

Table 1: Chemical composition of the essential oil from the aerial parts of *Boltonia asteroides* (L.) L'Her.

RI	Compound	%	RI	Compound	%
795	2-Methylhept-2-ene	0.2	1494	Bicyclogermacrene	1.3
802	Hexanal	0.9	1502	(E,E) - α -Farnesene	0.6
851	(2E)-Hexenal	2.6	1514	(Z)-Lachnophyllum ester	0.8
932	α-Pinene	1.0	1517	δ-Cadinene	0.9
977	β-Pinene	7.3	1524	(Z,E)-Matricaria ester	15.4
988	Myrcene	1.4	1559	(E)-Nerolidol	3.0
1024	<i>p</i> -Cymene	0.4	1580	Caryophyllene oxide	2.2
1028	Limonene	0.9	1654	α-Cadinol	0.7
1112	(E)-4,8-Dimethylnona-1,3,7-triene	1.3		Green leaf volatiles	3.4
1388	β-Elemene	4.4		Monoterpene hydrocarbons	11.0
1417	β-Ylangene	0.7		Sesquiterpene hydrocarbons	60.8
1418	β-Caryophyllene	2.9		Oxygenated sesquiterpenoids	5.9
1429	β-Copaene	0.6		Diacetylenes	16.2
1431	trans-α-Bergamotene	1.3		Others	1.6
1454	α-Humulene	0.7		Total identified	98.8
1480	Germacrene D	47.4			

4. Conclusions

This is the first report of the essential oil composition from *Boltonia asteroides*, and, as far as we are aware, the first report of an essential oil from any *Boltonia* species. The essential oil of *B. asteroides* was rich in sesquiterpene hydrocarbons and C_{10} diacetylenes, but the essential oil yield was very poor.

5. Acknowledgments

This work was carried out as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

6. Conflicts of Interest

The authors declare no conflicts of interest

7. References

- Kartesz JT. BONAP's North American Plant Atlas. Available online: http://bonap.net/MapGallery/County/Boltonia asteroides.png (accessed on Aug 7, 2019).
- Radford AE, Ahles HE, Bell CR. Manual of the Vascular Flora of the Carolinas. University of North Carolina Press, Chapel Hill, North Carolina, USA, 1968, ISBN 0-8078-1087-8.
- Missouri Botanical Garden. *Boltonia asteroides*. Available online: http://www.missouribotanicalgarden.org/PlantFinder/Plan tFinderDetails.aspx?kempercode=b730 (accessed on Jul 5, 2019).
- 4. Díaz JG, Barba B, Herz W. Acetylenic and terpenoid

constituents of *Boltonia asteroides*. Phytochemistry. 1994; 36(3):703-707.

- Stewart CD, Jones CD, Setzer WN. Leaf essential oil compositions of *Rudbeckia fulgida* Aiton, *Rudbeckia hirta* L., and *Symphyotrichum novae-angliae* (L.) G.L. Nesom (Asteraceae). American Journal of Essential Oils and Natural Products. 2014; 2(1):36-38.
- Lawson SK, Sharp LG, Powers CN, McFeeters RL, Satyal P, Setzer WN. Essential oil compositions and antifungal activity of sunflower (*Helianthus*) species growing in north Alabama. Applied Sciences. 2019; 9(15):3179.
- 7. Craft JD, Lawson SK, Setzer WN. Leaf essential oil compositions of bear's foot, *Smallanthus uvedalia* and *Polymnia canadensis*. American Journal of Essential Oils and Natural Products. 2019; 7(3):31-35.
- DeCarlo A, Johnson S, Okeke-Agulu KI, Dosoky NS, Wax SJ, Owolabi MS *et al.* Compositional analysis of the essential oil of *Boswellia dalzielii* frankincense from West Africa reveals two major chemotypes. Phytochemistry. 2019; 164:24-32.
- 9. Vargas Suarez A, Satyal P, Setzer WN. The wood essential oil composition of *Swietenia macrophylla* from Guanacaste, Costa Rica. American Journal of Essential Oils and Natural Products. 2019; 7(1):14-16.
- Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed. Allured Publishing, Carol Stream, Illinois, USA, 2007.
- 11. Konovalov DA. Polyacetylene compounds of plants of the Asteraceae family (review). Pharmaceutical Chemistry Journal. 2014; 48(9):613-631.

- 12. Tzakou O, Vagias C, Gani A, Yannitsaros A. Volatile constituents of essential oils isolated at different growth stages from three *Conyza* species growing in Greece. Flavour and Fragrance Journal. 2005; 20(4):425-428.
- 13. Nazaruk J, Kalemba D. Chemical composition of the essential oils from the roots of *Erigeron acris* L. and *Erigeron annuus* (L.) Pers. Molecules, 2009; 14(7):2458-2465.
- Raal A, Kaur H, Orav A, Arak E, Kailas T, Müürisepp M. Content and composition of essential oils in some Asteraceae species. Proceedings of the Estonian Academy of Sciences. 2011; 60(1):55-63.
- 15. Washington VD, Palazzo MC, Haber WA, Setzer WN. The chemical composition and antibacterial activity of the leaf essential oil of *Neomirandea angularis* (Asteraceae) from Monteverde, Costa Rica. Journal of Essential Oil-Bearing Plants. 2010; 13(1):108-111.
- Cardenas J, Rojas J, Rojas-Fermin L, Lucena M, Buitrago A. Essential oil composition and antibacterial activity of *Monticalia greenmaniana* (Asteraceae). Natural Product Communications. 2012; 7(2):243-244.
- 17. Rooks LE, Tuten JA, Haber WA, Lawton RO, Setzer WN. The antimicrobial activity and composition of *Fleischmannia pratensis* leaf essential oil from Monteverde, Costa Rica. Journal of Essential Oil-Bearing Plants. 2010; 13(2):219-223.
- Satyal P, Shrestha S, Setzer WN. Composition and bioactivities of an (*E*)-β-farnesene chemotype of chamomile (*Matricaria chamomilla*) essential oil from Nepal. Natural Product Communications. 2015; 10(8):1453-1457.
- Kim C, Bu HJ, Lee SJ, Hyun CG, Lee NH. Chemical compositions and anti-inflammatory activities of essential oils from *Aster spathulifolius* and *Vitex rotundifolia* maxim. Journal of Applied Pharmaceutical Science. 2014; 4(10):12-15.
- Rajčević N, Marin PD, Vujisić L, Krivošej Z, Vajs V, Janaćković P. Chemical composition of *Aster albanicus* Deg. (Asteraceae) essential oil: Taxonomical implications. Archives of Biological Sciences, Belgrade. 2015; 67(3):1055-1061.