

American Journal of Essential Oils and Natural Products

Available online at www.essencejournal.com

ISSN: 2321 9114 AJEONP 2014; 2 (1): 39-40 © 2014 AkiNik Publications Received: 10-04-2014 Accepted: 15-09-2014

Moses S. Owolabi

Department of Chemistry, Lagos State University P.M.B. 001, Ojo, Lagos, Nigeria.

Akintayo L. Ogundajo

Department of Chemistry, Lagos State University P.M.B. 001, Ojo, Lagos, Nigeria.

Isiaka A. Ogunwande

Department of Chemistry, Lagos State University P.M.B. 001, Ojo, Lagos, Nigeria.

Rebecca M. Hauser

Department of Chemistry, University of Alabama in Huntsville Huntsville, AL 35899, USA.

William N. Setzer

Department of Chemistry, University of Alabama in Huntsville Huntsville, AL 35899, USA.

Correspondence: Moses S. Owolabi

Department of Chemistry, Lagos State University P.M.B. 001, Ojo, Lagos, Nigeria. Email: sunnyconcept2007@yahoo.com

Essential oil composition of *Caperonia palustris* (L.) A. St-Hil. (Euphorbiaceae) growing in South West, Nigeria

Moses S. Owolabi, Akintayo L. Ogundajo, Isiaka A. Ogunwande, Rebecca M. Hauser and William N. Setzer

Abstract

The essential oil from the aerial parts of *Caperonia palustris* was obtained by hydrodistillation and analyzed by gas chromatography – mass spectrometry. The essential oil was dominated by sesquiterpene hydrocarbons, (*E*)-caryophyllene (31.2%), germacrene-D (28.1%), α -humulene (8.9%), and β -elemene (7.9%).

Keywords: Essential oil composition, (*E*)-caryophyllene, germacrene-D, α -humulene, β -elemene.

1. Introduction

Caperonia (False croton) is a genus of unpleasant perennial weeds of the Euphorbiaceae comprised of 60 species found in tropical America and tropical Africa [1]. Caperonia palustris (L.) A. St-Hil., commonly known in English-speaking countries as Texasweed or Sacatrapo, is an annual dicotyledonous broadleaf plant with a glabrous stem [2, 3]. It is an erect herb ranging in height from 0.3 to 3.0 m, with coarsely pubescent stems and petioles. Leaves are alternate, range in length of 2 to 15 cm, are broadly lanceolate, and serrated on the margins [4]. C. palustris prevails in clay soils, which are commonly used for rice and soybean rotations [5, 6]. However, C. palustris has been reported to cause great yield losses in rice production [7-10]. To the best of our knowledge, nothing is known about the chemical composition of C. palustris essential oil. In this report we present the first detailed GC-MS analysis of the essential oil of C. palustris aerial parts.

2. Materials and Methods

2.1 Plant Material

Aerial parts of *Caperonia palustris* were collected in May, 2013, from Olambe – Oke Aro, Ogun State, Nigeria, and the plant species was authenticated in the Botany Department, University of Lagos, Nigeria, with Voucher number LUH 5763. A 500 g sample of *C. palustris* was hydrodistilled for 4 h in a modified Clevenger-type apparatus to yield 1.64 g light yellow essential oil [11]. The essential oil so obtained was stored in a sealed glass bottle with screw lid cover under refrigeration at 4 °C.

2.2 GC-MS Analysis

The volatile oil sample was subjected to GC-MS analysis on an Agilent system consisting of an Agilent model 6890 Gas Chromatograph, an Agilent 5973 mass selective detector (EIMS, electron energy = 70 eV, scan range = 40-400 amu, and scan rate = 3.99 scans/sec) and an Agilent Chemstation data system. The GC column was a HP-5ms fused silica capillary with a (5% phenyl)- methyl polysiloxane stationary phase, film thickness 0.25 μm , length 30 m, and internal diameter of 0.25 mm. The carrier gas was helium with a column head pressure of 7.07 psi and a flow rate of 1.0 mL/min. Inlet temperature was 200 °C and MSD detector temperature was 280 °C. The GC oven temperature program was used as follows: 40 °C initial temperature, hold for 10 min, increased at 3 °C/min to 200 °C, increased 2 °C/min to 220 °C. A 1% w/v solution of the sample in dichloromethane was prepared and 1 μL was injected using a 10:1 split ratio.

Identification of the constituents of the volatile oil was achieved based on their retention data (retention indices) determined with reference to C₉-C₂₁ *n*-alkane homologous series, and by comparison of their mass spectral fragmentation patterns with those reported in the literature [12] and stored on the MS library [NIST database (G1036A, revision D.01.00) / ChemStation data system (G1701CA, version C.00.01.08)]. The chemical composition of *C. palustris* essential oil is summarized in Table 1.

3. Results and Discussion

The essential oil was obtained as a light yellow oil (0.328% of

the dried plant material). The GC-MS analysis of aerial parts of *C. palustris* facilitated the identification of oil components, which are listed in Table 1. The oil was mainly composed of sesquiterpene hydrocarbons dominated by (*E*)-caryophyllene (31.2%), germacrene-D (28.1%), α -humulene (8.9%), and β -elemene (7.9%). To our knowledge this is the first report on the essential oil composition of any *Caperonia* species, so comparison within the genus is not possible. There have been some *Croton* species that have sesquiterpene-hydrocarbon-rich essential oils, however, *e.g.*, *Croton draco* [13], *Croton isabelli* [14] and *Croton campestris* [15].

RI	Compound	%	RI	Compound	%
1375	α-Copaene	1.6	1499	Bicyclogermacrene	2.7
1385	β-Bourbonene	1.5	1504	α-Muurolene	0.2
1390	β-Cubebene	0.2	1508	Germacrene A	3.3
1393	β-Elemene	7.9	1511	(E,E)-α-Farnesene	0.5
1421	(E)-Caryophyllene	31.2	1518	Cubebol	1.1
1430	β-Сораепе	0.3	1526	δ-Cadinene	1.3
1435	γ-Elemene	0.4	1558	Germacrene B	1.8
1455	α-Humulene	8.9	1566	(E)-Nerolidol	0.5
1462	Alloaromadendrene	0.8	1577	Germacrene D-4-ol	0.9
1479	γ-Muurolene	tr	1584	Caryophyllene oxide	0.9
1484	Germacrene-D	28.1	1641	τ-Cadinol	0.9
1490	β-Selinene	0.6	1654	α-Cadinol	3.0
					_

Table 1: Essential oil composition of *Caperonia palustris*.

4. References

1496

1. Godara RK, Williams BJ, Webster EP. Texasweed (*Caperonia palustris*) can survive and reproduce in 30-cm flood. Weed Technology 2011; 25(4):667-673.

Valencene

- Godfrey RK, Wooten JW. Aquatic and Wetland Plants of Southeastern United States: Dicotyledons. University of Georgia Press, Athens, Georgia, 1982, 281-282.
- United States Department of Agriculture, Natural Resources Conservation Service. *Caperonia palustris* (L.) A St Hil Sacatrapo, 2014. http://plants.usda.gov/core/profile?symbol=CAPA11.
- 4. Southern Weed Science Society. Weed Identification Guide. Southern Weed Science Society, Champaign, Illinois, 1998.
- Koger CH, Reddy KN, Poston DH. Factors affecting seed germination, seedling emergence, and survival of Texasweed (*Caperonia palustris*). Weed Science 2004; 52(6):989-995.
- Poston DH, Nandula VK, Griffin RM, Koger CH. Texasweed (*Caperonia palustris*) control in soybean with postemergence herbicides. Weed Technology 2007; 21:670-673.
- Smith RJ. Weed competition in rice. Weed Science 1968; 16(2):252-255.
- 8. Smith RH. Competition of spreading dayflower (*Commelina diffusa*) with rice (*Oryza sativa*). Weed Science 1984; 32(1):116-119.
- Caton BP, Foin TC, Hill JE. Phenotypic plasticity of *Ammannia* spp. in competition with rice. Weed Research 1997; 37(1):33-38.

 Zhang JX, Li CH, Lou YL, Deng YY, Qiu CY. Studies on the transplanting rice yield loss caused by weed Alternanthera philoxeroides and its economic threshold. Acta Agriculturae Shanghai 2004; 20(1):95-98.

100.0

Total Identified

- British Pharmacopoeia, Vol 2, H.M. Stationary Office, London, 1980, 109.
- 12. Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Edn 4, Allured Publishing Corp, Carol Stream, Illinois, 2007.
- Setzer WN, Stokes SL, Bansal A, Haber WA, Caffrey CR, Hansell E *et al.* Chemical composition and cruzain inhibitory activity of *Croton draco* bark essential oil from Monteverde, Costa Rica. Natural Product Communications 2007; 2(6):685-689.
- 14. Vunda SLL, Sauter IP, Cibulski SP, Roehe PM, Bordignon SAL, Rott MB *et al.* Chemical composition and amoebicidal activity of *Croton pallidulus*, *Croton ericoides*, and *Croton isabelli* (Euphorbiaceae) essential oils. Parasitology Research 2012; 111(3):961-966.
- De-Almeida TS, Rocha JBT, Rodrigues FFG, Campos AR, da Costa JGM. Chemical composition, antibacterial and antibiotic modulatory effect of *Croton campestris* essential oils. Industrial Crops and Products 2013; 44:630-633.