Chemical composition of the essential oil from the aerial parts of *Boltonia asteroides* from North Alabama

Sims K Lawson, Layla G Sharp, Prabodh Satyal and William N Setzer

Abstract

The aerial parts of *Boltonia asteroides*, growing wild in north Alabama, have been collected, the essential oil obtained by hydrodistillation, and the essential oil analyzed by gas chromatography – mass spectrometry. The major components of *B. asteroides* were germacrene D (47.4%), dehydrolachnophyllum ester A (15.4%), and β-pinene (7.3%).

Keywords: False aster, false chamomile, Asteraceae, germacrene D, dehydrolachnophyllum ester

1. Introduction

Boltonia asteroides (L.) L’Hér. (false aster or false chamomile, Asteraceae, tribe Astereae) is a rhizotomaceous perennial herb native to eastern North America, and is found from the Dakotas south through Louisiana, Mississippi, and Alabama [1]. The plant has small (ca. 2 cm) daisy-like flowers with white ray florets with yellow disk florets (Figure 1) [2, 3]. A phytochemical study by Díaz and co-workers from plants collected from South Carolina revealed the aerial parts to contain several menthane and acyclic monoterpenoids, cadinane sesquiterpenoids, and acetylenic lactones [4]. As part of our continuing investigations on the essential oils of north Alabama Asteraceae [5–7] we have collected and analyzed the essential oil from the aerial parts of *B. asteroides*. To our knowledge, the essential oil from this plant has not been previously examined.

![Fig 1: Boltonia asteroides (L.) L’Her. Photograph by S.K. Lawson.](image)

2. Materials and Methods

2.1 Plant Material

The aerial parts of *B. asteroides* were collected on 12 August 2018 from the Flint River Greenway in north Alabama (34°38ʹ40ʺN, 86°27ʹ22ʺW, elev. 180 m). The plant was identified by S.K. Lawson; a voucher specimen (20180812-110757) has been deposited in the University of Alabama in Huntsville herbarium. The fresh plant material (49.09 g) was hydrodistilled using a Likens-Nickerson apparatus, with continuous extraction with CH₂Cl₂, for 3 h to give a pale-yellow essential oil (1.0 mg).

2.2 Gas Chromatographic – Mass Spectral Analysis

The essential oil of *B. asteroides* was analyzed by GC-MS, as described previously [8,9], using a Shimadzu GC-MS-QP2010 Ultra fitted with a Phenomenex ZB-5ms column. Identification of the essential oil components was determined by comparison of their retention indices and
their mass spectral fragmentation patterns with those in the literature10 or in our in-house library.

3. Results and Discussion
The essential oil from hydrodistillation of the aerial parts of \textit{B. asteroides} was obtained in very low yield (0.002\%). The chemical composition of \textit{B. asteroides} essential oil is compiled in Table 1. The essential oil was dominated by sesquiterpene hydrocarbons, including germacrine D (47.4\%), the diacetylene (\textit{Z,E})-matricaria ester (15.4\%), and the monoterpane β-pinene (7.3\%). The presence of the diacylenic compounds (\textit{Z})-lachnophyllum ester and (\textit{Z,E})-matricaria ester is consistent with the acetylenic compounds matricaria lactone, 8-decen-6-yn-4-olide, and 9-hydroxy-7-decen-5-yn-4-olide, that were previously characterized by Díaz and co-workers4. Diacetylenes have been found in several species of the Asteraceae, particularly in the tribes Anthemideae, Astereae, and Lactuceae11. The C\textsubscript{10} diacetylenes lachnophyllum ester and matricaria ester have been reported in the genera \textit{Conyz\textit{a}}12, \textit{Erigeron}13, and \textit{Matricaria}14. Additionally, germacrene D has been found to dominate the leaf essential oils of several species of Asteraceae5,7,15–17. In spite of the common name of \textit{B. asteroides}, false chamomile, the essential oil chemistry of \textit{B. asteroides} is very different from chamomile, \textit{Matricaria chamomilla}18. On the other hand, there are species of \textit{Aster} that are rich in germacrene D, including \textit{A. novae-angliae}5, \textit{A. spathulifolius}19, and \textit{A. albanicus}20.

<table>
<thead>
<tr>
<th>RI</th>
<th>Compound</th>
<th>%</th>
<th>RI</th>
<th>Compound</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>795</td>
<td>2-Methylhept-2-ene</td>
<td>0.2</td>
<td>1494</td>
<td>Bicyclogermacre</td>
<td>1.3</td>
</tr>
<tr>
<td>802</td>
<td>Hexanal</td>
<td>0.9</td>
<td>1502</td>
<td>(\textit{E,E})-α-Farnesene</td>
<td>0.6</td>
</tr>
<tr>
<td>851</td>
<td>(2E)-Hexenal</td>
<td>2.6</td>
<td>1514</td>
<td>(\textit{Z})-Lachnophyllum ester</td>
<td>0.8</td>
</tr>
<tr>
<td>932</td>
<td>α-Pinene</td>
<td>1.0</td>
<td>1517</td>
<td>δ-Cadinene</td>
<td>0.9</td>
</tr>
<tr>
<td>977</td>
<td>β-Pinene</td>
<td>7.3</td>
<td>1524</td>
<td>(\textit{Z,E})-Matricaria ester</td>
<td>15.4</td>
</tr>
<tr>
<td>988</td>
<td>Myrcene</td>
<td>1.4</td>
<td>1559</td>
<td>(\textit{E})-Nerolidol</td>
<td>3.0</td>
</tr>
<tr>
<td>1024</td>
<td>p-Cymene</td>
<td>0.4</td>
<td>1580</td>
<td>Caryophyllolide</td>
<td>2.2</td>
</tr>
<tr>
<td>1028</td>
<td>Limonene</td>
<td>0.9</td>
<td>1654</td>
<td>α-Cadinol</td>
<td>0.7</td>
</tr>
<tr>
<td>1112</td>
<td>(\textit{E})-4,8-Dimethylhinalona-1,3,7-triene</td>
<td>1.3</td>
<td></td>
<td>Green leaf volatiles</td>
<td>3.4</td>
</tr>
<tr>
<td>1388</td>
<td>β-Elemene</td>
<td>4.4</td>
<td></td>
<td>Monoterpane hydrocarbons</td>
<td>11.0</td>
</tr>
<tr>
<td>1417</td>
<td>β-Ylangene</td>
<td>0.7</td>
<td></td>
<td>Sesquiterpene hydrocarbons</td>
<td>60.8</td>
</tr>
<tr>
<td>1418</td>
<td>β-Caryophyllene</td>
<td>2.9</td>
<td></td>
<td>Oxygenated sesquiterpenoids</td>
<td>5.9</td>
</tr>
<tr>
<td>1429</td>
<td>β-Copaene</td>
<td>0.6</td>
<td></td>
<td>Diacetylenes</td>
<td>16.2</td>
</tr>
<tr>
<td>1431</td>
<td>trans-α-Bergamotene</td>
<td>1.3</td>
<td></td>
<td>Others</td>
<td>1.6</td>
</tr>
<tr>
<td>1454</td>
<td>α-Humulene</td>
<td>0.7</td>
<td></td>
<td>Total identified</td>
<td>98.8</td>
</tr>
<tr>
<td>1480</td>
<td>Germacrene D</td>
<td>47.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Conclusions
This is the first report of the essential oil composition from \textit{Boltonia asteroides}, and, as far as we are aware, the first report of an essential oil from any \textit{Boltonia} species. The essential oil of \textit{B. asteroides} was rich in sesquiterpene hydrocarbons and C\textsubscript{10}diacetylenes, but the essential oil yield was very poor.

5. Acknowledgments
This work was carried out as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

6. Conflicts of Interest
The authors declare no conflicts of interest.

7. References

